
IBM® Rational® Rhapsody® TestConductor Add On

User Guide

Rhapsody®

IBM® Rational® Rhapsody®
TestConductor Add On

User Guide

Release 2.8.2

2

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems
AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed
or implied, are made regarding Rhapsody software including documentation and its fitness for any
particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody® Automatic Test Generation Add On, and

IBM® Rational® Rhapsody® TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of
their respective owners.

© Copyright 2000-2019 BTC Embedded Systems AG. All rights reserved.

3

Contents

Content
Contents..4

Document Structure..9
Contacting IBM® Rational® Software Support..10

Conventions..11

Introduction...12

Rhapsody UML Testing Profile..16
Structure Overview...16

Adding the Testing Profile automatically...17
Adding the Testing Profile manually..19

Functional Specification...20
UML Testing Profile (UML20TP) Package..20

TestArchitecture Package...21
TestBehavior Package..21

TestConductor (RTC) Package...23
TestArchitecture Package...23
TestBehavior Package..27
TestDocumentation Package..30

Automatic Test Generation (ATG) Package...30

Using the Testing Profile..31

Refining Testing Profile Stereotypes..31

Model-based Unit Test Definition..32
Automatic Test Architecture Generation...33

Using Classes...35
Using Objects...38
Using Files (Modules)..39
Using Parts...40
TestArchitectures with multiple SUT classes or objects...40
Updating TestArchitectures..40
Up-to-date check for TestArchitectures..43
TestArchitecures for MicroC Models...43
TestArchitecures for Code centric Models...44
Unit testing of AUTOSAR Software Components...45
TestConductor.h, TestConductor_C.h and TestConductor_C.c, TestConductor.jar,
TestConductor.ads and TestConductor.adb...45
Generate and Build the Test Context..46

Test Case Definition...47
Test Case Definition with Code..47

Define a Code Test Case..47
Execute a Code Test Case..49
Failure Analysis in CodeTest Cases...49

4

Testing reactive behavior with Code Test Cases..50
Test Case Definition with Flow Charts...51

Define a Flow Chart Test Case...51
Execute a Flow Chart Test Case...52
Failure Analysis in Flow Chart Test Cases...53
Testing reactive behavior with Flow Chart Test Cases...53

TestCase Definition with Statecharts..54
Define a Statechart Test Case...55
Execute a Statechart Test Case...57
Failure Analysis in Statechart Test Cases...58

Test Case Definition with Sequence Diagrams...58
Define a Sequence Diagram Test Case...58
Execute a Sequence Diagram Test Case...61
Failure Analysis in Sequence Diagram Test Cases...62
Model Population – Create Driver Operations and Stub Operations..62

Creating test cases with the test case wizard..68
Creating Sequence Diagram test cases from existing Scenarios using an explicit instance
mapping...72

Definition of mappings for sequence diagram test case creation from existing scenarios........73

Test Execution..75
Overview..75

Test Configuration..75
Test Configuration for animation based testing..76
White Box Testing..77

Build Test Context (White Box)...78
Production Code (Black Box) Testing..79

Build Test Context (Black Box for animation based testing mode)..79

Test Case Execution...81
Test Execution Dialog for code, flow chart, startechart based tests..81

Test Execution Dialog..82
Test Information...82
Controlling test case execution..82

Test Execution Dialog for sequence diagram based tests...82
Test Execution Dialog..83
Test Information...83
Displaying Test Results by witness scenarios..84
Automatically adding witness scenarios to the model for failed SDInstances..........................86

Abort Test Execution..87
Execution Timeout...87

Execution timeout for animation based testing..87
Test Execution Report..87
Debugging test cases..89

Using breaks and tracer commands during debugging...90

Test Context Execution...92
Starting Test Execution..92
Stopping Test Execution...93
Execution Timeout...93
Ordering of Test Cases...93
Test Execution Report..94

Test Package Execution..95
Starting Test Execution..95

5

Stopping Execution..96
Execution Timeout...96
Test Execution Report..97

Assertion based testing mode...99
Choosing between testing modes...99
Migrating animation based test architecture to assertion based test architecture........................100
Automatical Migration of animation based TestArchitectures to assertion based Testing mode.102
Differences between animation and assertion based testing mode...102

Computing Model Coverage during Test Execution...103
Computing Model Coverage for single Test Cases...103

Coverage Items..105
Coverage Measurement..106
Traceability of Coverage Items..106
Choosing the Coverage Kind for Model Coverage..107

Computing cumulative Model Coverage for TestContexts...108
Computing cumulative Model Coverage for TestPackages..110

Computing Requirement Coverage...111
Computing Requirement Coverage for Test Cases and TestContexts...111
Transitivity of Dependencies (Refinement of model elements and requirements)......................113

Computing Code Coverage...114

Integration with CUnit/CppUnit Framework..114
Stereotypes for CUnit integration...115
Stereotypes for CppUnit integration...116
Test Definition for CUnit/CppUnit...118

Using Statechart Test Cases with CppUnit...118

Command Line Execution..120
Command Line Syntax for rhapsody.exe..120
Command Line Syntax for rhapsodycl.exe...122
Test Execution Report..123

Test Case Execution on Targets..123

Driving Operations Calls..123
Driving Operation Calls...123

Test Management..125
Managing Test Data..125

Linking Test Case to Requirements..125

TestConductor Dialog...127

TestConductor Settings...128
Sequence Diagram Properties...130
General Properties..132
Test Context Properties..137
Test Case Properties...138

Generating Test Reports with Rhapsody ReporterPLUS..142
Executing the Test Report..142
Using the HTML Test Report...145
Using the Test Requirement Coverage Report..147
Customizing the Test Report..149

Generating Test Reports with Rational Publishing Engine...149
Creating the Test Report...149
Test Requirement Coverage Report..150

6

Creating Report Templates...152

Using the TestConductor API...153
Available TestConductor API Commands..153
Defining Callbacks for TestConductor functions..155

Advanced Test Definition..157
Specifying Requirements with Sequence Diagrams...157

Graphical Feature Support..157
Synchronous and Asynchronous Messages..157
Linear and Partial Order...158

Parameters..160
Defining Parameters...161
Parameter Mapping..163

Using Time Interval for Delay Driving from Environment and TestComponents......................164
Activation Conditions..165

Defining an Activation Condition..166
Condition Marks..167
Preconditions (for SysML/Harmony)...168
Use Cases of Activation Conditions...169

Specifying Return Values and Output Values...172
Ignoring Unrealized Messages...175
Reference Sequence Diagram...176
Life Line and Part Decomposition..179

Advanced Sequence Diagram Test Definition..184
Defining a Sequence Diagram Test..185

Creating a Sequence Diagram Test Case..185
Adding a New Sequence Diagram Instance...186
Mapping Parameters..187
Don't care values, Ranges, and Tolerances...189
Exiting the Define Test Dialog Box...195

Use Cases of Sequence Diagram Test Cases..196
Simple Monitor..196
Automatic Driver...198
Ordered SD Instances..200
Driver-Assisted Monitor..202
Choosing Between Alternatives in a Cycle..205

User Defined Driving Operation Calls...208
RTC_DriverInitCode and RTC_DriverInitCodeAdditional..210
RTC_DriverCallCode and RTC_DriverCallCodeAdditional..210
Clean TestComponent..211
Clean TestPackage...212
Deleting User Defined Driver Operation Calls..212

User Defined Stub Operation Calls..213
RTC_StubBodyCode..214
Clean TestComponent..215
Clean TestPackage...215
Deleting User Defined Stub Operation Calls...216

Black-Box Testing of External Files and Libraries...216
Test Packages...217

Support for interfacing Files in C using <<CInterfaceFile>> Stereotype.......................................220

Using Serialize/Unserialize Functions for User Defined Types..221

7

Using auto generated serialization /unserialization functions...221
Using manually defined serialization /unserialization functions..222

Failure Analysis...224
Failure Reporting..225

Event sending out-of-order...226
Event sending in-order, but parameter values do not match...227
Event sending in-order, but parameter values not in range...229
Event consumption out-of-order...230
Event consumption in-order, but parameter values do not match...231
Event consumption in-order, but parameter values not in range...232
Operation call out-of-order...233
Operation call in-order, but parameter values do not match...235
Operation call in-order, but parameter values not in range...236
Operation call returned - Return value does not match...237
Operation call returned - Out Parameter values do not match..238
Operation call returned - Out Parameter values not in range..239
DataFlow Message - Value does not match..239
DataFlow Message - Value not in range...240
DataFlow Message out of order...240
Assertion failed..241

Using TestConductor from Eclipse..243

Using TestConductor from Rational Quality Manager...245

TestConductor Rhapsody Plugins..246
TestConductor Merge Coverage Reports Plugin...246

Merging model coverage reports..246
Merging code coverage reports..247
Merging requirement coverage reports...247

TestConductor RQM Plugin...249

TestConductor Check Model Plugin...250

Appendix..251
TestConductor Assert Macros (C/C++), TestConductor assert methods (Java), TestConductor assert
functions (Ada)...251

Using IntelliVisor for TestConductor Assert Macros..254

Syntax for Activation Conditions / Condition Marks..255

TestConductor Messages..257
Errors/Warnings regarding messages in Sequence Diagrams...257
Errors Regarding Complete Sequence Diagrams and Test (test will not be executed)................257

Restrictions...259
Limitations of design elements (sequence diagrams)...259
Functional Limitations...259

8

Document Structure
This user guide is organized as follows:

• Chapter 1, Introduction, provides an introduction to IBM® Rational® Rhapsody®
TestConductor Add On through a high-level overview of the main features.

• Chapter 2, Rhapsody UML Testing Profile, describes the defined stereotypes and
new terms which can be used for the definition and management of tests.

• Chapter 3, Model-based Unit Test Definition, explains how to create Test
Architectures and how to define test cases with sequence diagrams, statecharts,
flow charts, or pure code.

• Chapter 4, Test Execution, explains how to build and execute a test configuration.

• Chapter 5, Test Management, guides you through the process of creating and
editing the entire test suite.

• Chapter 6, Upgrading old TestConductor Test Cases, describes the process of
upgrading of existing test definitions from older TestConductor versions.

• Chapter 7, Advanced Test Definition, describes the powerful features of
sequence diagram test case definition like ordering, parameter mapping, activation
conditions, etc.

• Chapter 8, Failure Analysis, explains how to analyze the source of a possible
failure (after you have made design extensions and modifications).

• Chapter 9, Using TestConductor from Eclipse, explains how to use
TestConductor when working with Rhapsody in Eclipse platform integration.

• Chapter 10, Using TestConductor from Rational Quality Manager, explains
how to create test scripts and test cases in RQM for executing test cases with
TestConductor.

• Chapter 11, TestConductor Rhapsody Plugins, describes how to use additional
TestConductor plugins for Rhapsody.

9

Contacting IBM® Rational® Software Support
IBM Rational Software Support provides you with technical assistance. The IBM Rational
Software Support Home page for Rational products can be found at
http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support,
read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational
Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in
your country (where available). For specific country phone numbers, go to
http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information
that you will need to describe your problem. When describing a problem to an IBM
software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time,
know the answers to these questions:

What software versions were you running when the problem occurred?

Do you have logs, traces, or messages that are related to the problem?

Can you reproduce the problem? If so, what steps do you take to reproduce it?

Is there a workaround for the problem? If so, be prepared to describe the workaround.

10

http://www.ibm.com/planetwide
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/support/

Conventions
The following table lists the conventions used in the Rhapsody documentation.

Style Description

command1 >
command2

The greater-than (>) symbol leads you through the steps in a
menu or key sequence. For example, Add New > Package
means that you should first select Add New, then select
Package from the Add New submenu.

Bold type Bold type indicates items that you should select, such as buttons
or checkboxes in dialog boxes.
For example:
Click Apply

Italic type Italic type is used for emphasis, titles of referenced documents
and new terms.

Courier type Courier type is used for file names and directory paths, user
input, and code-related items such as instance names and
properties.

<filename> Angle brackets surround variable names that you should replace
with actual names. For example, you should replace <filename>
with the actual name of a file.

11

Introduction

Welcome to the User Guide for IBM® Rational® Rhapsody® TestConductor Add On.
TestConductor is part of the Rhapsody Testing Environment which is based on three main
components: “Automatic Test Architecture Generation”, “Automatic Test Case Execution”
and “Automatic Test Case Generation”. These three components are developed along the
UML Testing Profile as implemented in Rhapsody.

TestConductor supports the two main features “Automatic Test Architecture Generation”
and “Automatic Test Case Execution” of the Rhapsody Testing Environment. The optional

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) supports the
feature “Automatic Test Case Generation”.

In the Rhapsody Testing Environment the implementation of test cases can be chosen out
of:

• Sequence diagrams

• Statecharts

• Flow charts (only Rhapsody in C/C++)

• Pure code

The Rhapsody Testing Environment provides the ability to test a design against its
requirements. Advantages of using sequence diagrams as test cases are:

• Graphical definition

• Monitors/drivers

• Parameterized sequence diagrams

• Color-coded failure sequence diagrams

TestConductor is a model based testing environment used to debug and test object-
oriented embedded software designed in Rhapsody. TestConductor supports unit testing as
well as software integration testing based on graphical test definitions using sequence
diagrams. In Rhapsody in C++, Rhapsody in C, Rhapsody in Java, and Rhapsody in Ada
test cases can be defined also by statecharts, flow charts (only C/C++), or pure code.
Using sequence diagram related test cases, TestConductor supports an advanced graphical
failure analysis. These features make it easy to define and execute extensive test suites, as
well as to create complex tests drivers and test monitors. TestConductor supports
Rhapsody in C++, Rhapsody in C, Rhapsody in Java and Rhapsody in Ada. Limitations
regarding the different languages can be found in the chapter Restrictions.

12

This document focuses on the animation based testing mode, which is applicable to
Rhapsody in Java, Rhapsody in Ada, Rhapsody in C++ and Rhapsody in C. When using
Rhapsody in C++ or Rhapsody in C++ the assertion based testing mode is recommended
which is explained in details in the “TestConductor_User_Guide.pdf” document.

Rhapsody UML Testing Profile

The Rhapsody UML Testing Profile contains new terms and stereotypes that can be used
to model test artifacts in Rhapsody. It is based on the official UML Testing Profile.
However, several elements defined in the UML Testing Profile are currently not part of the
Rhapsody Testing Profile, while the Rhapsody Testing Profile contains additional elements
that are not part of the UML Testing Profile. These additional elements are used for test
activities that are not addressed by the UML Testing Profile, for instance stubbing.

Automatic Test Architecture Generation

The automatic test architecture generation – first supporting layer of the Rhapsody
Testing Environment and part of TestConductor – automates the complex task of creating
the test environment for e.g. arbitrary classes of the UML design.

From the Rhapsody project the user easily initiates the automatic generation of a test
architecture including:

• Creation of a new test package

• Creation of a new test context including

1. System under test (“SUT”)

2. Test components

3. Links between SUT and test components

Test Case Definition

A test case represents the smallest element that can be defined and executed by
TestConductor. A test case describes a sequence of input stimuli and expected behavior, in

13

order to verify a certain functional behavior of a system under test. Test cases can define
both, black box and white box behavior.

TestConductor supports several ways to define test cases:

• Sequence diagrams

• Statecharts

• Flow charts (only Rhapsody in C/C++)

• Pure code

With the optional add-on Rhapsody® Automatic Test Generation (ATG™) for Rhapsody
in C++ test cases can be generated automatically.

Test Case Execution

TestConductor is a test case execution engine and represents the second stage of the
Rhapsody Testing Environment. It enhances the testing capabilities by not only executing
the automatically generated test architecture, but it also offers a test execution analysis
with respect to the expected results. If the test case e.g. is implemented by a sequence
diagram the expected behavior is expressed by

• The ordering of defined messages

• Parameter values of messages

• Messages from SUT to testing components

• Specified return values on operation calls

Using TestConductor

This manual assumes that Rhapsody and TestConductor are already installed on your
system, and that you have a valid license. If you need assistance with installation or
licensing, contact customer support.

To execute tests, TestConductor relies on the compiled and linked model code of the test
architecture. Therefore, the project with the system under test must be in a state such that
you can compile and run the test architecture, just as you must do to use the interactive
simulation capabilities of Rhapsody. If you are using TestConductor with testing mode
“AnimationBased” (property TestConductor.Settings.TestingMode), you must compile the
code of at least the test components with animation instrumentation.

Note: For Rhapsody in Ada, make sure that you rebuild Rhapsody’s framework before
using TestConductor. To rebuild the framework, select “Build framework” from
Rhapsody’s code menu (after opening an Ada model). You only have to rebuild
the framework once.

Note: If you are using TestConductor with testing mode “AnimationBased” (property
TestConductor.Settings.TestingMode), make sure that you have compiled and
linked an executable component with animation instrumentation.

14

Note: If you are using TestConductor with testing mode “AnimationBased” (property
TestConductor.Settings.TestingMode), make sure that the properties
CG::Operation::Animate, CG::Operation::AnimateArguments,
CG::Event::Animate, and CG::Event::AnimateArguments of those
messages used for test execution based on sequence diagrams are switched on.
Otherwise they are not animated and cannot be tested with TestConductor. Ensure
this for the properties of these relevant messages, and also for their parent class
and package properties.

This guide uses sequence diagrams that are included (or have to be additionally created) in
the CashRegister sample. The chapter Advanced Test Definition uses sequence diagrams
from the PBX sample. Both samples do not provide step-by-step information.

15

Rhapsody
UML Testing Profile

The Rhapsody UML Testing Profile is based on the official UML Testing Profile. It
contains new terms and stereotypes that can be utilized for model testing artifacts in
Rhapsody. A couple of elements defined in the UML Testing Profile are presently not part
of the Rhapsody Testing Profile. However, the Rhapsody Testing Profile includes
supplementary elements that are not part of the UML Testing Profile. Stubbing, for
example, is one of these additional elements that are used for test activities not addressed
by the UML Testing Profile.

For further information on the Rhapsody UML Testing Profile please refer to the
TestConductor Tutorial, where depict examples on the Rhapsody Testing Profile are
provided. Hence, it is recommended to utilize the TestConductor Tutorial for training
purposes prior to going into further detail in this document.

Structure Overview
The Rhapsody Testing Profile is prearranged in three major packages with additional sub-
packages and the TestingProfile stereotype.

• Rhapsody UML Testing Profile (UML20TP)

1. TestArchitecture

2. TestBehavior

• Rhapsody TestConductor (RTC)

1. TestArchitecture

2. TestBehavior

16

• Automatic Test Generation (ATG)

Adding the Testing Profile automatically
The first usage of any TestConductor functionality automatically adds the Rhapsody
Testing Profile to a model. For example this can be done by choosing the Rhapsody menu
entry Tools > TestConductor.

In case the model does not yet contain the actual Rhapsody Testing Profile, TestConductor
can add the missing Rhapsody Testing Profile automatically.

17

Select Yes to add the Rhapsody Testing Profile to the model. Select No to abort this
process.

In case the Rhapsody Testing Profile is unloaded, TestConductor ask to load it.

Select Yes to load the Rhapsody Testing Profile to the model. Select No to abort this
process.

In case a loaded profile already uses the name “TestingProfile” Rhapsody TestConductor
advises the user.

Select OK. After removing the existing profile with name TestingProfile from the model
redo the action to start Rhapsody TestConductor.

Once the Rhapsody Testing Profile has been loaded into a Rhapsody project by starting
TestConductor the Rhapsody browser window will contain the above stated testing profile
packages and its individual sub-packages as shown in the following picture.

18

Adding the Testing Profile manually
It is also possible to add the testing profile manually to a model:

• Open your project in Rhapsody

• Select the menu item File > Add Profile to Model…

• Select the following Data Type: ‘Profile (*.sbs)’

19

• Select in Rhapsody installation folder:
‘...\Share\Profiles\TestingProfile\TestingProfile_rpy\Te
stingProfile.sbs’

• Press Open to add the Rhapsody Testing Profile to the model.

Functional Specification
The functional specification of the Rhapsody Testing Profile shall be explained by means
of its structure stated in the previous chapter Structural Overview.

UML Testing Profile (UML20TP) Package
The UML20TP package contains stereotypes and new terms derived from the official
UML Testing Profile. It consists of two major packages:

• TestArchitecture and

• TestBehavior

 as shown in below picture.

20

TestArchitecture Package
The TestArchitecture package consists of the stereotypes

• SUT

• TestComponent

• TestConfiguration

• TestContext

The system under test (SUT) is the component being tested. A SUT can consist of several
objects. The SUT is exercised via its public interface operations and events by the test
components, the test context or the system environment (ENV).

A test component (TestComponent) is a class of a test system. The test component objects
(TestComponentInstances) realizes partially the behavior of a test case. An instance of a
test component may have a set of interfaces which are used to communicate via
connections with other test component instances or with SUT objects. It also may have
operations, so called driver operations (DriverOperations) that can drive SUT operations
or call events of the SUT and so called stub operations (StubOperations) which are able to
generate necessary “stub” return values.

The test configuration (TestConfiguration) is a dependency to a code generation
configuration. Depending on this configuration the code for the complete test context
including its test cases can be generated, built and executed.

A test context (TestContext) describes the context in which test cases are executed. A test
context is responsible for defining the structure of the test system, i.e., which test
component objects and which SUT objects exists and how they are interconnected. The
test component instances and SUT objects are normally parts of a test context. Since test
cases are operations of a test context, a test case can access both the test component
instances and also the SUT objects.

TestBehavior Package
The TestBehavior package contains two stereotypes named

• TestCase

• TestObjective

21

A test case (TestCase) is a specification of one case to test the system under test including
what to test. It defines the input stimuli and the expected results to be observed. It
implements a test objective. A test case is an operation of a test context (described above).

A test objective (TestObjective) is a named element describing what should be tested. It is
associated to a test case.

22

TestConductor (RTC) Package
The RTC package consists of three major packages: TestArchitecture, TestBehavior and
TestDocumentation as shown in below picture.

TestArchitecture Package
The TestArchitecture package contains the stereotypes:

• Subpackage CppUnit

 CppUnitConfig

 CppUnitContext

• Subpackage Cunit

 CUnitConfig

 CUniContext

• Subpackage Diagrams

 TestContextDiagram

• AUTOSAR_RTE

• AUTOSAR_RTEInstance

• Arbiter

• ArbiterInstance

• ControlArbiter

• instantiated

• usedSUTObject

• usedTestComponentObject

• NoConsoleApp

• ParameterTable

• replacement

• greyboxreplacement

• greyboxinstancereplacement

• instancereplacement

23

• filereplacement

• scheduled

• Scheduler

• SCTCInstance

• stubbed

• Stub

• TestActor

• TestFile

• TestComponentInstance

• TestComponentObject

• TestingConfiguration

• TestPackage

• TestParameter

• TestLink

• use_ParameterTable

• use_replacement

• use_greyboxreplacement

• use_greyboxinstancereplacement

• use_instancereplacement

• use_filereplacement

• TestSUT

• TestSUTObject

Subpackages CppUnit and CUnit contain stereotypes for the integration of CppUnit and
CUnit testing with Rhapsody.

Stereotype CppUnitContext can be applied to a class and sets some properties for CppUnit
testing integration. You can change a test context to CppUnitContext – and vice versa - by
right-clicking a test context and secting “Change to > CppUnitContext”.

Stereotype CppUnitConfig can be applied to a configuration and provides a set of tags for
customization of the CppUnit testing integration with Rhapsody.

Stereotype CUnitContext can be applied to a class and sets some properties for CUnit
testing integration. You can change a test context to CUnitContext – and vice versa - by
right-clicking a test context and secting “Change to > CUnitContext”.

Stereotype CUnitConfig can be applied to a configuration and provides a set of tags for
customization of the CUnit testing integration with Rhapsody.

Subpackage diagrams: A test context diagram (TestContextDiagram) is a structure
diagram that contains the SUT instances, the test component instances and their
interconnections. It is used to define the structure of the test context graphically.

24

The test context diagram is being generated during the test architecture generation inside
the test context. It is a structure diagram stereotyped with TestContextDiagram.

Stereotype instantiated is used to label associations that are always instantiated with a
valid link during runtime. TestConductor interprets associations labelled with this
stereotype like links. <<instantiated>> asscociations are expected to own a
stereotyped dependency on the object to which the association will be initialized at run
time. This dependency will be stereotyped <<usedSUTObject>> if the association
points to an object used as SUT. It will be stereotyped
<<UsedTestComponentObject>> if the associations points to a
TestComponentObject.

Stereotype Arbiter is used by TestConductor for auto generated test components that
control the execution of a SD test case.

Stereotype ArbiterInstance is used by TestConductor for test component instances that are
instances of Arbiter test components.

Stereotype ControlArbiter is used by TestConductor to mark a dependency of a SD test
case on a Arbiter test component that controls the SD test case.

25

Stereotype NoConsoleApp can be applied to configurations in order to suppress opening a
console when running the application.

Stereotype ParameterTable is used to mark a controlled file as a parameter table definition
that contains values for all external test parameters of a test context.

Stereotype replacement is used to mark a dependency of a test component on the original
class that is replaced by the test component in the test architecture.

Stereotype instancereplacement is used to mark a dependency of a test component object
(implicit object) on the implicit object that is replaced by the test component object in the
test architecture.

Stereotype filereplacement is used to mark a dependency of a test file on the original file
that is replaced by the test file in the test architecture (Rhapsody in C).

Stereotype greyboxreplacement is used to mark a dependency of a <<TestSUT>> on the
original class that is replaced by the <<TestSUT>> in the test architecture (for Grey Box
Testing).

Stereotype greyboxinstancereplacement is used to mark a dependency of a SUT greybox
object (implicit object) on the implicit object that is replaced by the greybox SUT object in
the test architecture.

Stereotype scheduled is used to mark a dependency of a test context on a Scheduler test
component that controls the starting and stopping of test cases of the test context.

Stereotype Scheduler is used to mark an auto generated test component that is used to
control the activation and termination of test cases.

Stereotype SCTCInstance is used to mark a test component instance to be an instance of a
statechart test case test component.

Stereotype stubbed is used to mark an operation of a test component to be stubbed, i.e.,
that the behavior o fthe operation has been changed for testing purposes.

New term TestActor is used for test components that have the role of an actor in the test
architecture. Test actors replace actors for testing purposes.

New term TestFile is used for test files in the test architecture. Test files replace files of the
design for testing purposes.

New term TestComponentInstance is used to specify instances of test components.

New term TestComponentObject is used to stereotype copies of implicit objects in the role
of test components.

Stereotype TestingConfiguration is used to mark a configuration that is used for testing
purposes. The stereotype TestingConfiguration provides several tags that can be used in
order to define specific settings for the generated testing code.

New term TestPackage represents a package that contains testing related model elements,
e.g. other test packages, test contexts or test cases. It allows grouping of multiple test
related elements into one package, and it can be used to separate testing related elements
from design related elements.

Stereotype TestParameter is used to mark an attribute of a test context to be a parameter
that can be controlled by a testing configuration by using a parameter table.

26

Stereotype use_ParameterTable is used to mark a dependency of a testing configuration
on a parameter tanle in order to specify that the testing configuration shall apply the linked
parameter table for the test parameters of the test context for which the testing
configuration generates code for.

Stereotype use_replacement is used to mark a dependency of a test component instance on
a test component that is a replacement of a design class for testing purposes.

Stereotype use_instancereplacement is used to mark a dependency of the test context on a
TestComponentObject (i.e. a greybox replacement of an implicit object used in the role of
a test component).

Stereotype use_filereplacement is used to mark a dependency of a test context on a test file
indicating that this test file is used by the test context for testing purposes.

Stereotype use_greyboxreplacement is used to mark a dependency of a SUT instance on a
<<TestSUT>> - which is a replacement of a SUT class for Grey Box testing purposes.

Stereotype use_greyboxinstancereplacement is used to mark a dependency of the test
context on a TestSUTObject (i.e. a greybox replacement of an implicit SUT object).

New term TestSUT is used to mark a replacement class that is basically a copy of the
original SUT class (used only for Grey Box Testing).

New term TestSUTObject is used to mark a replacement object (basically a copy of the
original implicit SUT object – used only for Grey Box Testing).

Stereotype TestLink is a stereotype on links an connectors (SysML). <<TestLink>> sets
a code generation property that forces generation of link initialization code for link,
regardless of its location in the design/test architecture hierarchical.Normally, a link has to
be located at least on the least level containing the linked instances. Using stereotype
<<TestLink>> allows TestConductor defining the link locally to the test architecture
although the link refers to instances anywhere in the browser hierarchy.

Stereotype Stub prevents model elements in TestComponent, TestComponentObject,
TestFile, TestSUT, and TestSUTObject from being modified by TestArchitecture update.
TestArchitecture update will omit updating model elements stereotyped <<Stub>>.

TestBehavior Package
The TestBehavior package is composed of a number of stereotypes like:

• CodeCoverageResult

• CoverageResult

• ModelCoverageResult

• DefaultOperation

• DefaultTriggeredOperation

• DriverOperation

• RTC_InstInfo

• RTC_MsgInfo

• RTC_OperatorInfo

• RTC_RefInfo

• SDInstance

27

• StatechartTestCase

• StubbedOperation

• StubOperation

• TestAction

• TestAssignment

• TestCondition

• TestResult

• TestScenario

• Unrealized

• WitnessScenario

A CodeCoverageResult is a document that reports the code coverage by one or more
TestCases. Code coverage computation is supported only for assertion based testing
moode.

A ModelCoverageResult is a document that reports which model elements are covered by
one or more TestCases. Model coverage can be enabled using tag
ComputeModelCoverage on the testing configuration.

A CoverageResult is a document that reports which model elements are covered by one or
more TestCases. This stereotype is maintained only for compatibility reasons.

A default operation (DefaultOperation) defines the default behavior of an operation of a
test component. A test case in which the behavior of this operation is not explicitly
specified uses this default behavior in the current test case execution.

A driver operation (DriverOperation) is an operation of a test component which is able to
inject input stimuli to the SUT objects. It is generated automatically by TestConductor for
the test component class that calls a message of a SUT object defined in a sequence
diagram. During execution of the test case, TestConductor calls the driver operation, and
as a result the test component stimulates the SUT as it is described in the used sequence
diagram.

The stereotype RTC_InstInfo contains two tags RTC_IgnoreSCBehavior and
RTC_Monitor. When adding this stereotype to an instance line of a test scenario, the user
can set these tags. TestConductor uses these tags when executing the test. If the tag
RTC_IgnoreSCBehavior is set, TestConductor ignores the normal state chart behavior of
the tagged instance. If the tag RTC_Monitor is set, TestConductor just monitors all
messages starting from the tagged instance.

The stereotype RTC_MsgInfo contains tags RTC_Monitor, RTC_Receiver, etc. When
adding this stereotype to a message in a test scenario, the user can set these tags. If the tag
RTC_Monitor is set, the tagged message is just monitored by TestConductor. If the tag
RTC_Receiver is set, the tagged value is used as the real receiver instance of the tagged
message. If the tag RTC_DriverCallCode is set, TestConductor generates the string
contained in this tag instead of the standard call code TestConductor generates for driver
operations. If the tag RTC_InitCode is set, TestConductor generates the string contained in
this tag instead of the standard init code TestConductor generates for driver operations. If
the tag RTC_MsgId is set, the specified string is used to reference the message in macros
RTC_ASSERT_SD_NAME. If the tag RTC_StubBodyCode is used, TestConductor
generates the string contained in this tag instead of the standard stub code TestConductor

28

generates for stub operations. For further information please read the chapter User Defined
Driving Operation Calls at page 208.

The stereotype RTC_RefInfo is used internally for unique identification of messages in
sequence diagrams which are referenced by other sequence diagrams.

A sequence diagram instance (SDInstance) represents one instance of a test scenario.
When using a sequence diagram for testing purposes, several parameters must be defined
that influence the behavior of a test case. A combination of a sequence diagram with such
a set of parameters forms a sequence diagram instance.

Stereotype StatechartTestCase is used to stereotype the dependency of a statechart test
case on the test component owning the statechart defining the test.

A stubbed operation (StubbedOperation) is an operation for which at least one test case
specifies a behavior that is different from the default behavior. The different behavior is
stored in a stub-operation. The stubbed operation decides at runtime depending on the
executed test case if either the default behavior should be executed or a specific stub-
operation.

A stub operation (StubOperation) is a replacement of an operation of a test component
class. It realizes the code for an operation call return value specified in the referenced
sequence diagram. The code of the stub operation is generated automatically by
TestConductor.

A test action (TestAction) is an action block that can be placed on life lines in
TestScenarios. There are different kinds of test actions: <InitAction>, <PreCallAction>,
<CallAction>, <PostCallAction>, <StubAction>. Inside these actions, one can place e.g.
assertions to perform complex checks on output values (return or out arguments), or one
can write code that initializes complex input data.
These kinds of TestActions correspond to the tags of RTC_MsgInfo

 <InitAction> - RTC_DriverInitCode

 <PreCallAction> - RTC_DriverInitCodeAdditional

 <CallAction> - RTC_DriverCallCode

 <PostCallAction> - RTC_DriverCallCodeAdditional

 <StubAction> - RTC_StubBodyCode

Note, that both specification techniques are mutual exclusive. If such TestActions are used
in order to determine the code propulated for the respective message, the RTC_MsgInfo
tags are ignored for this message.

A test result (TestResult) represents an outcome of an execution of a test case. It is a
textual report that contains detailed information about the test case execution, e.g. if the
test case has passed or failed.

The stereotype TestScenario (test scenario) contains two tags RTC_ActivationCondition
and RTC_SDParameters. When adding this stereotype to a test scenario, the user can set
these tags. With the tag RTC_ActivationCondition the user can specify the activation
condition of the sequence diagram. With the tag RTC_SDParameters the user can set the
parameters of the sequence diagram.

Messages with stereotype Unrealized are filtered out and ignored during test execution.
See also section Ignoring Unrealized Messages.

29

TestDocumentation Package
The TestDocumentation package contains a Matrix-Layout TestRequirementCoverage and
a Table-Layout TestResultTable in order to present test information in matrix and table
notation.

The layouts are used to define two stereotypes:

• TestRequirementMatrix

• TestResultTable

A TestRequirementMatrix shows in an array view if and how requirements are tested by
test cases. The left hand side of the array shows all existing test cases. The upper side
shows all the requirements. The cells contain an entry if a TestObjective from the test case
to the requirement exists in the model, for instance from test case Code_tc_0 to
requirement REQ1.

A TestResultTable shows in a table form the existing test cases and their current result
values. The left column of the table shows all existing test cases. The right column shows
the current test case results, for instance verdict Passed for test case Code_tc_0.

Automatic Test Generation (ATG) Package
The ATG package consists of several stereotypes which are enhancements to the UML
Testing Profile. For more information about the ATG package and its stereotypes please
refer also the Rhapsody Automatic Test Generation (ATG) User Guide.

30

Using the Testing Profile
The Rhapsody Testing Profile is automatically utilized by Rhapsody TestConductor. The
functionality of the tool set are explained in the subsequent chapters of this user guide.

Refining Testing Profile Stereotypes
Most model elements in a test architecture created by TestConductor are marked with
stereotypes defined in the Testing Profile. Stereotypes are used for three functions: 1.) To
arrange special elements in the same group in the model browser ('new term' stereotypes);
2.) As a hook for TestConductor actions (TestConductor actions are only available on
certain elements); 3.) Stereotypes add or modify certain properties/tags of elements of the
test architecture.

For example test cases in a test architecture are basically operations provided with the new
term stereotype <<TestCase>>, which sets some property values and leads to grouping all
test cases in the model browser underneath the node TestCases (instead of operations).
Also several TestConductor actions (e.g. “Update TestCase”) are only possible for
<<TestCases>> but not for common operations. As another example the stereotype
<<TestingConfiguration>> is used to distinguish standard configurations from testing
configurations which are adjusted to the special needs of the TestConductor test
architecture. A <<TestingConfiguration>> has additional tags for configuring additional
features (like coverage measurement) or fine-tuning the test execution (e.g. rtc_log_kind
to define the manner of logging).

Users may wish to create their own stereotypes to have a simple and transparent way to
induce specific changes to elements in reoccurring scenarios. But if settings or tags are to
be modified which are also affected by a coexisting Testing Profile stereotype on the same
element -meaning that two stereotypes are trying to modify the same property in the same
way- it is not sure which stereotype's modification is actually applied on the element,
therefore it is not recommended to have conflicting stereotypes. The option to replace the
Testing Profile stereotype with the user stereotype is not advised either, since the Testing
Profile stereotypes act as hooks for TestConductor actions, thus disabling TestConductor
functionality on that element. The solution is to have the user stereotype inheriting from
the Testing Profile stereotype, thus preventing conflicts and preserving TestConductor
functionality on that element1.

In fact the Testing Profile already provides such a refined stereotype: The stereotype
<<TargetTestingConfiguration>> inherits from stereotype <<TestingConfiguration>> and
adds additional tags and modifications to properties suitable for test execution on target.
Because of the inheritance of the original stereotype <<TestingConfiguration>> all
TestConductor actions expecting a testing configuration will accept this
<<TargetTestingConfiguration>> as well.

1Note that changing default values of TestConductor stereotypes may affect the functionality of the test
architecture.

31

Model-based
Unit Test Definition

The term unit test is often used within the software development, but interpreted quite
different. Unit tests are performed on differently large software units like simple functions,
simple classes up to complex function libraries. However, the goal of each unit test is in
most cases the same. On the one hand the unit is tested for its functional behavior. On the
other hand often additionally structural analyses are accomplished, in order to find
uncovered (dead) code.

In order to prepare, execute, and assess a unit test several steps are usually performed:

1. A test architecture (or test harness or test frame) must be constructed
2. Test cases must be defined and implemented
3. Test cases must be executed on the host machine
4. Test cases must be executed on the target machine

Each of the four mentioned steps is usually time consuming and difficult to perform.
TestConductor makes the preparation, execution, and the assessment of tests much easier
by lifting the test process up to the level of UML models, and by offering a high degree of
automation for the steps listed above.

TestConductor supports unit testing on model-level by following the UML Testing Profile.
Therefore TestConductor automates the time consuming and complex task of test
environment creation. The automatic test architecture generation can be used for:

• Simple classes (In SysML: Activities, blocks, Viewpoint)

• Simple classes with inheritance

• Composite classes

• Composite classes with inheritance

• Objects (In SysML: Parts)

• Files (Modules)

The other complex task of unit testing is the definition of test case or test scenarios,
typically done by writing test code in the same language than the unit to be tested. Model-
based unit testing with TestConductor combines the advantage of graphical test case
definition via sequence diagrams or flow charts with the familiar pure code based test
cases. Using the optional add-on Rhapsody Automatic Test Generation (ATG), you have
also the possibility to perform automatic test case generation.

The next chapters use the CashRegister model known from the Rhapsody “Essential”
Tool Training. The unit test will be done on the CashRegister class.

32

Automatic Test Architecture Generation
Testing units of a Rhapsody model using the Rhapsody Testing Profile requires certain
steps to be repeatedly performed. Therefore TestConductor provides a powerful feature
that creates the complete test architecture automatically. Automatic test architecture
generation means:

• Creation of a new test package

• Creation of a new test context

• Instantiation of the selected SUT class as part of the test context

• Creation of test components

• Instantiation and 'wiring' of test component instances as parts of the test context

• Creation of an adequate code generation configuration

• Adding a test configuration (dependency-relation) to the test context referring to
the created code generation configuration

• Creation and drawing of a test context diagram

Fundamentally, TestConductor supports two different testing modes: Animation based and
assertion based testing mode. Test architecture creation will create different resulting test
architectures depending on the chosen testing mode:

• animation based testing mode (applicable to C, C++, Java, Ada models): In
animation based testing mode, the scheduling and arbitration, i.e., the way
TestConductor decides whether a test case is passed or failed, is based on
animation messages coming from Rhapsody’s animation feature.
In particular comparison of message observations to the expectations according to
the test specification relies on serialization underlying the animation feature.
Test execution is based upon running an appropriate test specific observer in the

33

Rhapsody process communicating with the tested application via the Rhapsody
animation socket. Hence, animation based testing mode always requires:

◦ animation instrumentation (including requirement of appropriate serialization
for types, objects, classes, functions, events, e.t.c)

◦ socket connection between tested application and Rhapsody application.

• assertion based testing mode (applicable to C and C++ models only, not available
for Java and Ada): In contrast to animation based testing mode, in assertion based
testing mode both scheduling and arbitration of test cases is directly controlled by
assertions that are compiled into the test executable, i.e., scheduling and
arbitration of test cases is independent from Rhapsody’s animation feature. Since
in assertion based testing mode the test cases are part of the application itself,
neither animation instrumentation nor socket connection between tested
application and Rhapsody application is required, giving way for testing the
application without the animation overhead (e.g. enabling testing production code)
as well as testing without the requirement of a runtime connection to the tested
application (e.g. enabling testing on target).
This document focusses on animation based testing mode.

For animation based test architectures, test architecture creation will always introduce test
components that inherit from original design classes – if possible. Since stubbing of
operation calls is only possible in test components, stubbing is restricted by the restrictions
for inheritance imposed by the particular modeling language. E.g. Rhapsody in C models
only allow inheritance from interfaces – thus, regular classes can't be stubbed by inheriting
test components. For Rhapsody in C++ models only virtual operations can be stubbed,
non-virtual operations can't be stubbed using inheriting test components.

A table with the main differences between assertion based and animation based testing
mode can be found here: Differences between animation and assertion based testing mode
on page 102.

TestArchitecture generation can be customized interactively using property
TestConductor::Settings::CreateTestArchitectureMode (cf TestConductor
settings “General Properties”, page 132).

If CreateTestArchitectureMode is set to ‘Standard’, then project properties are used in the
generated code generation configuration while ‘Advanced’ opens a dialog that allows
selection of an existing configuration from which all overridden properties. settings, and
scope settings will be inherited.

It may sometimes be necessary to manually adjust the scope of the CG Component after
automatic test architecture creation. In rare cases, all classes of one package may have been
replaced by replacements, but types or events of that package still need to be regarded in
the scope. In this case, it might be helpful to select a package with right-click instead of
left-click. While left-clicking a package in the scope dialog selects the package and its
contents, right-click selects only the package and its non-selectable content.
Note that TestConductor can't determine meaningful parameters for non-standard
constructors automatically for instances of test components or classes having no default
constructor. It might be necessary to manually adjust the constructor calls for test
component instances or for the SUT after test architecture creation w.r.t. constructor
arguments.

34

Using Classes
For the next steps do the following:

• Open the CashRegister Model from the
‘\Samples\CppSamples\TestConductor’ folder.

• Browse to the object model diagram folder in the package CashRegisterPkg

• Open the object model diagram ProductDatabase Overview

There are two alternative ways to invoke creation of a test architecture for the class
CashRegister :

• Right-click on the CashRegister class in the Rhapsody browser and select
Create TestArchitecture

• Right-click on the CashRegister class in the object model diagram and select
Create TestArchitecture

35

TestConductor automatically creates the complete necessary test architecture which
consists of:

• A new test context diagram with the test context TCon_CashRegister
containing the CashRegister object itsCashRegister itself as SUT and all
necessary test component instances which are derived from the SUT associations
and ports.

36

• A new test package TPkg_CashRegister which contains all generated test
components, the test context TCon_CashRegister with the SUT
itsCashRegister, the test context diagram and the test component instances

37

Using Objects
Creating a test architecture on objects is a similar workflow as shown for classes, but in
order to create a test architecture for testing an object, the object can not be directly
instantiated as part of a test context. If an object was instantiated as part of a test context,
the object would be moved into another scope and thus the model would be modified.
Hence, in order to provide testing support for objects without modification of the original
design, the test contexts just references the object from the design using directed
associations and directed links. Since by default the original (implicit) object is referenced
with all its relations to other objects in the model and because TestConductor can't modify
these relations without modifying the referenced object or other model elements in its
scope, stubbing is not supported in test architectures for objects in animation based testing
mode.

In order to refer to an object, the test context is created with a directed association to the
selected object, which does not modify the object. This association is stereotyped with the
testing profile stereotype <<instantiated>>.

Except for test architectures created with global object support (to enable global object
support for C or C++ models, check property
TestConductor::Settings::CreateTestArchitectureUsingGlobalObjects)
<<instantiated>> associations are not initialized by links but the test context is
instrumented with an additional constructor/initializer initializing the association with the
address of the global variable representing the object. This constructor/initializer has to
take the multiplicity of the object. into account The implementation of the
constructor/initializer is currently limited to Rhapsody in C/C++.

38

Except for test architectures created with global object support, the test architecture for
objects will not care about ports of the object, since the mapping of these ports to ports of
other objects may already be defined in the design. The only way to stimulate an object in
a system test architecture is to use the association from the test context to the object.

Rhapsody offers an alternative to create a test architecture on a selected object. The user
can expose the class of the selected object. For Rhapsody in C++ this alternative will set
the user into the position of applying unit tests to the underlying class of the object under
test. For Rhapsody in C, in general, exposing an object’s class might not be the best
choice, because exposing an object's class massively affects the code representation of
the object's functions.

Note: For Rhapsody in Ada, the user has to set the <<instantiated>> association
manually. This is due to the fact, that global objects are instantiated after
instantiation of the initial instances specified in the Initialization tab of the code
generation configuration's feature dialog. In order to set the associaton manually,
the initialization code entry of the Initialization tab of the code generation
configuration's feature dialog is used, e.g.:
Tpkg_object_0.TCon_object_0.set_itsObject_0(

p_TCon_object_0.all, Default.RiA_Instances.object_0);
if object_0 is an object of object_0_Class.

Using Files (Modules)
Creating a test architecture on files(to be more precise: modules) is a similar workflow as
shown for objects. Support of modules is useful mostly for Rhapsody in C, since
Rhapsody in C++ only allows external files within the scope of a CG component. Since
modules provide global declarations and definitions, test support for modules is realized
by a test context referring the module using a <<Usage>> dependency.

The declaration of external (source and library) files and testing with TestConductor is
discussed in the chapter Black-Box Testing of External Files and Libraries at page 216.

39

Using Parts
Only global (i.e. top-level) objects may be tested. There will be no support for testing parts
of composite classes.

TestArchitectures with multiple SUT classes or objects
TestArchitectures with more than one SUT class or object can simply be created by first
creating a TestArchitecture for one of the classes or objects to be tested and successively
adding further SUT instances. TestArchitecture Update can be used to automatically
complete the TestArchitecture with TestComponents and TestComponentObjects.

Creating TestArchitectures for more than one class or object will in general be an at least
partially manual task, since the SUT elements have to be connected accordingly and the
code generation scope has to be manually adapted according to the involved model
elements.

For black box TestArchitectures an iterative approach of TestArchitecture creation,
removal of TestComponents, addition of further SUT elements, appropriate connection of
SUT elements and TestArchitecture updates can easily performed using Rhapsody
modeling capabilities and the context menu helpers in the Rhapsody browser.

The testing cookbook provides examples e.g. answering the questions “How can I create a
test architecture with multiple SUT classes and/or instances?”, “How can I create a test
architecture for a Package with multiple classes?”.

Updating TestArchitectures
TestArchitecture creation generates an appropriate test environment for the SUT in its
state of development in a particular instant of time. When the model is further developed,
functions of the SUT and its environment may change their signature, interfaces and ports
may be added or deleted, relations may be added and deleted, etc. Whenever such
modifications took place, the TestArchitecture needs to be adapted to the modified model.
For existing TestArchitectures, TestConductor provides the possibility to automatically
update a TestArchitecture after changes have been made in the model. 'Update
TestArchitecture' follows the same rules as TestArchitecture creation and will complete the
existing TestArchitecture with appropriate TestComponents for added relations and update
TestComponents w.r.t. modified relations and interfaces of the SUT. Since
TestArchitecture avoids deleting model elements that may contain user changes – such as
e.g. existing operation bodies. Furthermore, TestArchitecture update will not affect the
scope selection in the code generation component. Hence, it might become necessary to
manually adapt the scope selection and to manually delete artifacts in the TestArchitecture,
which have become superfluous due to modifications of the model. It is in general
recommended to update the TestArchitecture after modifications of the SUT in order to
keep track of the changes in the TestArchitecture.

The following example illustrates TestArchitecture update:

40

There is a class A that contains a P1 with a required Interface I1 and a provided Interface
I2. The interface I1 specifies one operation f() that takes no arguments and has no return
type, and interface I2 specifies an operation g() also without arguments and return type.
When selecting class A as the SUT, TestConductor creates the following TestArchitecture
for it:

In the generated TestArchitecture, one TestComponent is created containg an appropriate
port P1 such that the instance of the TestComponent can be linked to the Port P1 of the
SUT instance itsA. Now suppose you do some changes on the SUT class A. For instance,
we can add an additional Port P2 with a required Interface I2 to A, and we add a new
operation h to the Interface I1:

41

Because of these design changes, the previously generated TestArchitecture is not
complete any more, In order to get again a complete TestArchitecture TestConductor
provides the capability to update an existing TestArchitecture. To do this, select the
TestContext that should be updated and select “Update TestArchitecture”:

After applying “Update TestArchitecture”, you get the following updated
TestArchitecture:

42

To update the TestArchitecture accordingly, TestConductor did the following
modifications to the existing TestArchitecture:

1. A second TestComponent is created that is connected to the new Port P2 of the SUT
instance.

2. Since an additional operation was specified for Interface I2, an additional operation h
is added to the TestComponent connected to port P1.

After these modifications have been made by TestConductor, the TestArchitecture is
complete again.

Up-to-date check for TestArchitectures
TestConductor offers a context menu entry on TestContext “Check if TestArchitecture is
up-to-date”. Using this context menu item it can be checked whether “Update
TestArchitecture” will apply changes to an existing TestArchitecture or if the
TestArchitecture is up-to-date.

TestArchitecures for MicroC Models
TestConductor supports testing of MicroC models with a specifically taylored
TestArchitecture generation.

43

Per default TestConductor restricts code generation component for the generated
TestArchitecture such that all design packages but only the TestPackage containing the
architecture belong to its scope. Setting property
TestConductor::Settings::CreateTestArchitectureMode to ‘Advanced’ allows inheritance of
overridden properties from an already existing configuration

Since code generation for MicroC does not regard initialization settings of the
configuration, i.e. no initial instance selection, TestConductor explicitly creates an object
of the test context.

The MicroC profile provides two different initialization modes: ‘CompileTime’ and
‘RunTime’. While ‘RunTime’ is like normal initialization for C models which requires no
specific support by TestConductor, ‘CompileTime’ influences a set of model elements,
such as e.g. accessability of associations. In particular, this affects the generated
initializers of TestContexts for objects (cf. TestArchitecture creation “Using Objects”,
page 38). Consequently, TestArchitectures generated for initialization mode ‘RunTime’ are
in general not compilable with ‘CompileTime’ initialization and vice versa.
Note, that this also affects the initializer of TestComponents generated for statechart
TestCases (cf. TestCase Definition with Statecharts, page 54 ff). It is, hence, strictly
recommended to check the initialization mode defined for the project before creation of a
TestArchitecture and to check the initialization mode defined for the referenced
configuration before creation of the first statechart TestCase.

TestArchitecures for Code centric Models
For code centric Rhapsody models, the source code of the SUT is compiled to a library
and the executable with the test harness is linking this library. The code of the SUT library
is not instrumented with animation code and it is built with the code centric property
settings while the test harness contains animation instrumentation.

For the SUT library, it is possible to chose an already existing library of the project or
TestConductor can automatically create a new library CG Component.

The TestConductor sample “CppCarRadio” demonstrates testing of a code centric model.
For the next steps, please open the sample located in folder
“Samples\CppSamples\TestConductor\CppCarRadio”, right click class “Radio” and select
“Create TestArchitecture”. A dialog appears with the options to select an existing library
CG Configuration or to create a new library CG Component and Configuration for the
SUT. If the existing CG Configuration “RadioLib::RadioDebug” is selected, a
TestArchitecture is created with another CG Component and Configuration for the
generation and compilation of the test harness. This CG Configuration has some properties
enabled which are usually disabled in the code centric profile, for example properties
“CG::Relation::AddGenerate” and “CG::Relation::SetGenerate” are enabled and
“CG::Configuration::MainGenerationScheme” is set to “Full”. The scope of the newly
created CG Component contains only the test harness and it has a “Usage” dependency to
the CG Component of the SUT, making sure the needed header files and the library of the
SUT can be found.
If the user selects to create a new CG Component for the SUT library, then TestConductor
creates two CG Components in the TestArchitecture: First a library CG Component
“libSUT” with the scope set to the SUT class and its associations and the default property
settings of the project and second an executable CG Component for the test harness.

44

After creating the TestArchitecture, the user should revise the settings of the newly created
CG Components and Configurations. It might be necessary for example to add more
model elements to the scope of the CG Components or to modify the options for the
“Additional Sources”, “Include Path” etc. The user has to build the SUT library; for the
CG Configuration “RadioLib::RadioDebug” this can be done by executing the shell script
“buildLib.sh” (located on the project folder) in a cygwin shell. The executable of the test
harness can be build using the TestConductor menu functions “Build TestCase”, “Build
TestContext” or “Build TestPackage”.

The TestArchitecture for code centric models can be used the same way as
TestArchitectures for non code centric models, with some restrictions because of the not
animated SUT (internal communication of the SUT cannot be observed).

Unit testing of AUTOSAR Software Components
Testing of AUTOSAR Software Components is supported only for AssertionBased testing
mode.

TestConductor.h, TestConductor_C.h and TestConductor_C.c,
TestConductor.jar, TestConductor.ads and TestConductor.adb

Since Rhapsody 7.1 the testing profile require the test context, test components, and test
component instances to include the TestConductor header file by setting property
CPP_CG.Class.ImpInclude to TestingConductor.h. Additionally, TestConductor
adds the path '$(OMROOT)/../TestConductor' to the include-path of the code-
generation component when creating a test architecture.

45

To provide an adequate assertion support for Rhapsody in C, a similar header file is
provided and the testing profile was extended, such that test context, test components, and
test component instances automatically include an appropriate TestConductor_C.h
header by setting property C_CG.Class.ImpInclude to TestConductor_C.h. In
contrast to the Rhapsody in C++ solution, for Rhapsody in C also an C-Implementation
file was provided, which is linked only once.

For Java, the class “org.btc.TestConductor.TestConductor” is added as specification
include for TestContext and TestComponents.

For Ada, the package “TestConductor” is made visible by adding an appropriate “with”
clause to the implementation of test contexts and test components.

Generate and Build the Test Context
After generation of the new test context you should check whether it is complete and
consistent. Therefore you should generate und build the test context to get information
about potential compile or link warning or errors.

• Right-click on the test context TCon_CashRegister and select Build
TestContext from the context menu.

46

If the generate, compile and link procedure are resulting in an executable you are able to
execute it.

Test Case Definition
Now test cases for the generated test context can be defined. TestConductor provides four
possible means to define test cases:

• Test case definition with pure code

• Test case definition via flow charts (only in C/C++)

• Test case definition via statecharts

• Test case definition via sequence diagrams

Test Case Definition with Code
One of the most used means to test units today is writing test cases in the same language
than the application is written. In the C/C++/Java/Ada domain, often the complete test
environment and also the test cases are written in C/C++/Java/Ada with the goal of
functional or coverage testing.

With Rhapsody and TestConductor it is also possible to write test cases manually, because
test cases are stereotyped operations of a test context.

Define a Code Test Case
The creation of a new test case is nearly the same than creation of a new operation:

• Right-click on the test context TCon_CashRegister and select Create Code
TestCase

47

• Name the new test case “tc_code”

• Open the Features dialog of the new test case and enter the code into the
implementation tab.

48

The objective of the test case is to verify whether the function addProduct correctly adds
a product to the bill list (realized by the ordered association itsProduct).

First, the test case checks whether the bill list is empty. If not, the operation
isNoMoreProduct returns FALSE. In this case the macro RTC_ASSERT_NAME
(“check_1.1”, i1=1) returns a FAILED to TestConductor. Otherwise the result of the
RTC_ASSERT_NAME macro is PASSED. In the next step a product “apple” is added. At
the end the bill list is checked again.

Note: This test case is using two attributes i1 and i2 of type int. Both attributes have
to be defined within the test context TCon_CashRegister.

Note: TestConductor provides several RTC_ASSERT macro types, which can be used to
define assertions within test cases. A detailed description of these macros can be
found in the chapter TestConductor Assert Macro on page 251.

Execute a Code Test Case
Now you are able to execute the test case by doing following steps:

• Right-click on the test case “tc_code” and select Build TestCase from the context
menu

• Right-click on the test case “tc_code” and select Execute TestCase from the
context menu

The test execution window shows the result of the checked assertions. Both are PASSED
meaning that the tested behavior is ok.

Further information about test execution and the related results is described under chapter
Test Execution on page 75.

Failure Analysis in CodeTest Cases
TestConductor lists in the execution dialog all executed assertions. To display the
corresponding assertion, select in the execution dialog the item name in the column Name
and press the button Show Assertion.

49

Further information about failure analysis can be found in chapter Failure Analysis on
page 224.

Testing reactive behavior with Code Test Cases

Since code test cases are basically operations of a test context, testing reactive behavior,
i.e. reaction to events, can not be done without modifications to the test context.
Operations can't wait on events so please make the TextContext an active object and hence
a separate thread. In this case, the thread executing the test context can be delayed unless
the SUT has reacted to an event.

 Example code in C++:
itsClass_0.GEN(evX());
OXFTDelay(1000);
RTC_ASSERT_NAME(“reaction”,itsClass_0.IS_IN(reaction_state));

 Example code in C:
RiCGEN(&(me->itsClass_0),evX());
RiCOXFDelay(1000);
RiCIS_IN(&(me->itsClass_0),reaction_state);

 Example code in Java:
itsStopWatch.gen(new evPressKey(1));

try {

 wait(4000);

} catch(Exception e)

{ }

TestConductor.ASSERT_NAME("Check state of
stopwatch",itsStopWatch.isIn(ROOT.Running));

50

Test Case Definition with Flow Charts
A graphical way to describe test cases is by using flow charts. Since test cases are special
operations of a test context you can use flow charts. Flow charts can be used to define the
behavior of operations with Rhapsody.
Defining test cases by flow charts is available for C++ and C only.

Define a Flow Chart Test Case
• Right-click on the test context TCon_CashRegister and select Create

FlowChart TestCase

• Name the new test case “tc_flow_chart”

• Draw the following flow chart

51

The objective of the test case is the same as used in the code test case above.

First, the test case checks whether the bill list is empty. If not, the operation
isNoMoreProduct returns FALSE. In this case the macro RTC_ASSERT_NAME
(“check_2.1, Initialization failed”, 0) returns a FAILED to
TestConductor. In the next step a product “apple” is added. At the end the bill list is
checked again

Execute a Flow Chart Test Case
Now you are be able to execute the test case by doing following steps:

• Right-click on the test case “tc_flow_chart” and select Build TestCase from the
context menu

• Right-click on the test case “tc_flow_chart” and select Execute TestCase from the
context menu

52

The test execution dialog shows the result of the defined assertions. The assertion
“check_2.2, Product successfully added” passed the test, which means that the tested
behavior is ok. Other than in the code test case here you can only see one assertion in the
execution dialog. This is due to the condition connector used in the flow chart. Only when
the condition [i1==1] is false, the assertion “check_2.1, Initialization failed” is
executed.

Further information about test execution and the related results is described under chapter
Test Execution on page 75.

Failure Analysis in Flow Chart Test Cases
TestConductor lists in the execution dialog all executed assertions. To display the
corresponding assertion, select in the execution dialog the item name in the column Name
and press the button Show Assertion.

Further information about failure analysis can be found in chapter Failure Analysis on
page 224.

Testing reactive behavior with Flow Chart Test Cases

53

Since flow chart test cases are basically operations of a test context, testing reactive
behavior, i.e. reaction to events, can not be done without modifications to the test context.
Operations can themselves not wait on events. Thus, the test context has to be active, i.e.
must run in a thread different form the thread executing the SUT. In this case, the thread
executing the test context can be delayed unless the SUT has reacted to an event.

 Example code in C++:
itsClass_0.GEN(evX());
OXFTDelay(1000);
RTC_ASSERT_NAME(“reaction”,itsClass_0.IS_IN(reaction_state));

 Example code in C:
RiCGEN(&(me->itsClass_0),evX());
RiCOXFDelay(1000);
RiCIS_IN(&(me->itsClass_0),reaction_state);

 Example code in Java:
itsStopWatch.gen(new evPressKey(1));

try {

 wait(4000);

} catch(Exception e)

{ }

TestConductor.ASSERT_NAME("Check state of
stopwatch",itsStopWatch.isIn(ROOT.Running));

TestCase Definition with Statecharts
Test cases can alternatively be defined using statecharts. Due to their ability to wait on
timeouts, statechart test cases are particularly suited for testing reactive behavior. In order
to separate test case behavior from possible reactive behavior of the test context, statechart
test cases are defined using specialized test components, which are then dynamically
instantiated for test execution.

Statechart test cases are comprised of the following model elements:

 a TestCase, i.e. basically an operation of the test context.

 a TestComponent owning the statechart defining the test case behavior.

 a dependency of the test case on the test component. This dependency is
stereotyped <<StatechartTestCase>>.

This chapter gives a short overview about the usage of statechart test cases. It describes:

 How to define a simple statechart test case.

 How the model is populated for executing a statechart test case.

 How statechart test cases can be executed.

54

Define a Statechart Test Case
• Right-click on the test context TCon_CashRegister and select Create

Statechart TestCase

Creation of a statechart test case adds a test case to the test context. This test case has a
dependency on a newly created test component owning the statechart. The test component
has a directed association to the test context, which can be used to refer to parts, variables
and operations of the test context. Upon execution, the statechart test case dynamically
instantiates the test component, initailizes the association and starts statechart execution.

Furthermore, the test context needs to be populated with a rtc_init() and a rtc_exit()
operation which are invoked by the statechart. This population is initiated by “Update
TestCase”, “Update TestContext”, and “Update TestPackage”, respectively.

The following figure shows the browser after statechart test case creation:

55

• Name the new test case “tc_statechart”

• Draw the following statechart

56

Execute a Statechart Test Case
Now you are be able to execute the test case by doing following steps:

• Right-click on the test case “tc_statechart” and select Update TestCase from the
context menu

• Right-click on the test case “tc_statechart” and select Build TestCase from the
context menu

• Right-click on the test case “tc_statechart” and select Execute TestCase from the
context men

The test execution dialog shows the result of the defined assertions. The assertion
“evStart_received” passed the test, which means that the tested behavior is ok.

57

Further information about test execution and the related results is described under chapter
Test Execution on page 75.

Failure Analysis in Statechart Test Cases
TestConductor lists in the execution dialog all executed assertions. To display the
corresponding assertion, select in the execution dialog the item name in the column Name
and press the button Show Assertion.

Further information about failure analysis can be found in chapter Failure Analysis on
page 224.

Test Case Definition with Sequence Diagrams
Another option to define test cases is by using sequence diagrams. In the context of the
Rhapsody Testing Profile such sequence diagrams are stereotyped as test scenarios (new
term: TestScenarios). Test scenarios play a dominant role in the TestConductor test
process. They are the graphical means of specifying and defining the tests, and enable
TestConductor to visualize design flaws.

This chapter gives a short overview about the usage of sequence diagram based test cases.
It describes:

• How to define a simple sequence diagram test case

• How the generation of driver and sub operation works (see also chapter Model
Population on page 62)

• How sequence diagram test cases can be executed

Detailed information regarding the usage of the powerful features of sequence diagram
test cases are described in chapter Advanced Test Definition on page 157 ff.

Define a Sequence Diagram Test Case

Driving the SUT using Test Components
• Right-click on the test context TCon_CashRegister and select Create SD

TestCase

58

Note: TestConductor generates a new test case “SD_tc_0()” with a dependency
“SD_tc_0” to a newly generated test scenario “SDTestScenario_0”.

• Rename the new test case to “tc_SimpleStart”

• Rename the new test scenario to “SDSimpleStart”

The generated test scenario looks like the following diagram. It contains lifelines for each
SUT and test component object defined in the test architecture.

59

• Remove the lifelines TCon_CashRegister.itsTC_For_itsProduct and
TCon_CashRegister.itsTC_for_itsCountedProduct from the view,
because these lifelines are not used in the following test scenario

• Draw the following messages into the test scenario

In this test scenario the test component TCon_CashRegister.itsTC_at_hw is driving
the SUT with the message evStart(). The expected result is the message shown below
show().

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

The scenario describes the normal way in which objects communicates among each other.
Messages from an environment line are only necessary when messages have to be sent
from the system boundary (e.g. an actor is sending an event to an object of the system).

Driving the SUT using ENV

If you are testing an animated application, inputs can also originate from the ENV life line
in a sequence diagram. To define a sequence diagram test case in such a manner you have
to draw a slightly different test scenario.

• Create a new test case as described above

• Rename the new test case to “tc_SimpleStartENV”

• Rename the new test scenario to “SDSimpleStartENV”

60

• Remove the lifelines TCon_CashRegister.itsTC_For_itsProduct and
TCon_CashRegister.itsTC_for_itsCountedProduct from view,
because these lifelines are not used in the following test scenario

• Add an ENV line to the test scenario

• Draw the following messages into the test scenario

Execute a Sequence Diagram Test Case
Now you are be able to execute the test case by doing following steps:

• Right-click on the test case “tc_SimpleStart” and select Update TestCase from the
context menu

• Right-click on the test case “tc_SimpleStart” and select Build TestCase from the
context menu

• Right-click on the test case “tc_SimpleStart” and select Execute TestCase from
the context menu – Alternatively you can right-click on test scenario to
“SDSimpleStart” and select “Exceute TestCase of TestScenario” from the context
menu.

• The test is executed, and you can see the results in the execution window.

61

Failure Analysis in Sequence Diagram Test Cases
The execution of the test case failed. To find out why you can do the following:
Select the item “SD_tc_0” in the execution dialog and double-click the item. Alternatively,
select the item “SD_tc_0” and select “Show as SD” from the context menu.

With Show as SD TestConductor has generated a new color coded sequence diagram
which shows the found failure.

In this case the argument of the show() message sent by the SUT has a different value than
expected. The expected argument value is “aMsg=OK” while the real observed value is
“aMsg=Ready”. The reason for the problem is that we specified an incorrect test scenario
which must be corrected now.

You can change the argument from “OK” to “Ready” in the test scenario
“SDSimpleStart”. Then again perform the steps described above.

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

Further information about test execution and the related results is described in chapter Test
Execution on page 75.

Further information about failure analysis can be found in chapter Failure Analysis on
page 224.

Model Population – Create Driver Operations and Stub Operations
Whenever test components are used to drive input messages of the SUT or to be forced to
return a pre-defined value of an operation call to the test component users have to provide
driver or stub operations for test components.

By using sequence diagram test cases TestConductor automates the generation of driver
operations and stub operations. Simply by choosing the context menu Update TestCase
on test case level, by choosing the context menu Update TestContext on test context
level, or by choosing the context menu Update TestPackage on test package level the

62

work is done. Choosing one of these menu entries starts the so-called “model population”
process of TestConductor. It analyses each defined sequence diagram instance and the
linked test scenarios to generate necessary driver and stub operations for the test
components.

Driver Operations

Driver operations (DriverOperations) are created for any message going from a test
component to the SUT, except for messages carrying the tag RTC_Monitor, or messages
starting at an instance line with the tag RTC_Monitor. In this case TestConductor assumes
the message should not be driven. Driver operations will be generated only for messages
from sequence diagrams referred by a sequence diagram instance with the mode “driver
and monitor”.

For example look into the generated driver operation of the test case “tc_SimpleStart”:

TestConductor analyzed the given test architecture, the ports, and the interfaces, and then
TestConductor generated a new driver operation for the test component TC_at_hw called
tc_SimpleStart_evStart_1(). The implementation tab of this operation shows the
generated code. Beside some comments there is the code line

OUT_PORT(hw)->GEN(evStart());

This implementation realizes the sending of the message evStart() from the
TestComponentInstance TCon_CashRegister.itsTC_at_hw through the port hw
to the SUT. During test execution TestConductor will call the driver operation
tc_SimpleStart_evStart_1() which in turn generates the specified input event
evStart() using the port connection (hw).

The name of the driver operation is the concatenation of the name of the test case, “_”, the
name of the original operation, “_” and a number to create a unique name. A comment is
generated into the code of the driver operation that contains the identifier of the message

63

and the name of the test case for which the driver operation was generated. This allows the
user to identify the correct driver operation if he wants to edit it.

In the context of the model-population, the identifier of a message is the value of the tag
TestBehavior::RTC_MsgInfo::RTC_MsgId. TestConductor generates such an
identifier for a message when needed, using the naming scheme
'message_<unique_number>'.

The visibility of the driver operation will be public, the property
CG.Operation.AnimAllowInvocation of this operation will be set to ”All” to make
sure this operation can be invoked by TestConductor.

The body of the driver operation consists of a call of the original operation on the SUT
(either on the destination instance itself or via a port, this is derived from the test context).

The values of any input argument for the driven operation call is derived from the
specification in the sequence diagram, the specified return-value(if existent) and the
specified output argument values are stored in local variables. TestConductor makes sure
that the call is done on the correct instance of the SUT if multiple instances of the same
SUT class exist.

If the sequence diagram specifies that the returned value should be checked, the macro
RTC_ASSERT_SD_NAME is used to check if the returned value and the expected
returned value are equal. The same macro is used to check if out or in/out argument values
returned by the operation call are as specified in the sequence diagram. If any of these
checks fails the test case fails.

The values of parameters defined for the sequence diagram instance are propagated to the
driver operation this way: If any parameter is used in the argument value- or return value
specification of the operation that should be driven, then in the body of the driver
operation the argument-value or return-value is substituted with the value of the
parameter. A corresponding substitution is taken into account, if sequence diagram
parameter values are used as sequence diagram instance names.

For further information how to customize the driver operation please read the chapter User
Defined Driving Operation Calls at page 208.

Stub Operations

Typically stub operations (StubOperations) are used to return a special return value for an
operation call that is needed to test a special behavior of the SUT that depends on this
return value.

Stub operations are created for any operation call in the sequence diagram going from the
SUT to a test component if a return value (or an out value for an out or in/out argument) is
specified for this operation. TestConductor needs the ability to determine and control the
value returned by the operation. On the other hand there might be some calls to the same
operation without a specified return value or the operation is called by a test component on
a test component. Because of this TestConductor has to generate a different body for the
operation, but it must still be possible to call the original operation.

To show this in an example you have to do some model changes:

• Open the feature dialog of operation show() of class IDisplay in package
InterfacePkg

• Change the return type from void to bool

64

• Open the feature dialog of operation show() of the test component TC_at_hw
in package TPkg_CashRegister_0

• Change the return type from void to bool

• Change the implementation of the operation show() from “return” to
“return true”.

• Define a return value false for the message show() in the test scenario
“SimpleStart”.

65

• Choose Update TestCase from the context menu of test case “tc_SimpleStart”

The result of the update and model population process can be seen in the Rhapsody
browser (see following figure)

66

TestConductor has done some modifications within the test component TC_at_hw.

• The operation show() has been renamed to original_show(..) and is
stereotyped with DefaultOperation.

• A new stub operation tc_SimpleStart_stub_show_1() has been
generated. The generated stub operation returns a value false needed for the test
case “tc_SimpleStart” .

• A new stubbed operation show() has been generated.

67

The stubbed operation show() replaces the original operation show() and is called
always when the SUT calls the operation show() on the specified test component. This
operation immediately decides whether the original show message has to be called or if a
stubbed value shall be generated. This behaviour is realized on a per test case and on a per
message basis.

Note: Each message in a sequence diagram has a unique Rhapsody GUID. So
TestConductor is able to uniquely identify each message with in a sequence
diagram.

For further information how to customize the stub operation please read the chapter User
Defined Stub Operation Calls at page 213.

Creating test cases with the test case wizard
As an alternative to manually create test cases, one can also automatically create test cases
with the test case wizard.The test case wizard allows to automatically create test cases
based on existing

• Sequence Diagrams

• Operations and Event Receptions

• Requirements

In order to create a test cases based on an existing Sequence Diagram, do the following:

1. In the browser or in the sequence diagram editor, right click the sequence diagram
and select “Create TestCase…”. This opens the test case wizard dialog:

68

2. In the test case wizard dialog, all test architectures (i.e., all test contexts) that are
suitable to map the life lines of the existing sequence diagram to the life lines that
are available in the test architecture (i.e., the life lines of the SUT instances and
the life lines of the test component instances) are listed. A test architecture is
suitable, if

• All life lines of the existing sequence diagram can be mapped to life lines of SUT
instances or test component instances s.t. all specified messages can occur also
between the remapped life lines of the test architecture.

• At least one life line of the existing sequence diagram must belong to the same
class (or file/object) as one of the SUT instances of the test architecture. This rule
can be turned on/off by setting the property
“TestConductor.Settings.MapSDToTestArchitectureMode” to “weak”. By setting
this property to “weak”, no existence of a life line that has the same class as one of
the SUT classes is required any more. Only the specified messages must be
possible in the remapped life lines of the test architecture. This mode allows to
remap an existing sequence diagram also to test architectures that contain
completely disjoint classes but which have at least interfaces that are compatible.
The default value for this property is “strict”.

3. If no suitable test architecture is found, the list contains only the element.
<<new>>. When selecting <<new>>, a new dialog will open that lists all classes
of all life lines of the selected sequence diagram. In this dialog, one has to choose
one of the listed classes as the SUT class for the new test architecture. After
pressing ok, a new test architecture will be created for the selected SUT class.

4. As a result, a new sequence diagram test case will be created that contains the
same messages as the original sequence diagram, but the life lines of the test
architecture.

69

In order to create a test cases based on an operation or an event reception, do the
following:

1. In the browser, select one of the operations or event receptions of a class (or
file/object) and select “Create TestCase…” from the context menu.

2. In the test case wizard dialog, all test architectures (i.e., all test contexts) that
contains a SUT instance of the class (or file/object) of the selected
operation/event reception are listed. Additionally, the element <<new>> is listed.
Furthermore, a dropdown box can be used to select the kind of test case one
wants to create. Depending of the selection of the test architecture and the test
case kind, a new test case is created and added to the selected test architecture.
When <<new>> is selected, a new test architecture for the class (or file/object) of
the selected operation is created.

3. The created test case already contains a call to the selected operation with default
arguments. Additionally, a dummy assertion is created that can be refined in order
to check out values of the called operation.

70

In order to create a test cases based on a requirement, do the following:

1. In the browser, select a requirement and select “Create TestCase…” from the
context menu.

2. In the test case wizard dialog, all test architectures (i.e., all test contexts) of the
model are listed. Additionally, the element <<new>> is listed. Furthermore, a
dropdown box can be used to select the kind of test case one wants to create.
Depending of the selection of the test architecture and the test case kind, a new
test case is created and added to the selected test architecture. When <<new>> is
selected, a new test architecture (a subsequent dialogs asks for the class for which
a new test architecture should be created) is created. Furthermore, the original
requirement for which the new test case has been created is linked as a test
objective to the test case.

71

Creating Sequence Diagram test cases from existing Scenarios
using an explicit instance mapping

Creating Sequence Diagram test cases from existing Scenarios can be done either fully automated
using the Test Case Wizard (page 68) or by explicitly providing a mapping of the classifiers of the
source scenario to classifiers in the test architecture for which the test case will be created.

When attempting to create a sequence diagram test using the case wizard, the test case wizard first
analyzes all existing test architectures for being suitable candidates for test case creation and offers the
suiting test architectures for selection as target for test case creation. Hence, if instances or messages in
the source scenario have no possible realization according to the automatic mapping algorithm, the
respective test architecture is not offered for selection. The algorithm provides no information why
certain test architectures aren't considered suitable for the particular scenario.

The heuristics of the mapping algorithm maps classifiers of the source scenario to 'compatible' –
according to the chosen mapping strategy (weak or strict, cf. pages 68 ff. and 132 ff.) – classifiers in
the selected test architecture. The heuristics work pretty well for classifiers with port contracts. In
particular for classifiers engaged in only few communications or without port contracts, the heuristics
may produce not optimal results.

The test case wizard is only capable of an instance to instance mapping. Merging or splitting instance
lines – e.g. according to composite and part relations – is not supported by the test case wizard.

To overcome the drawbacks described above, creating sequence diagram test cases from existing
scenarios – optionally using an explicit instance mapping – has been introduced as alternative to the
test case wizard.

A sequence diagram test case from an existing scenario can be created by invoking 'Create
TestCase from Scenario' on the scenario.

For a user defined mapping and a determined test architecture, the test case is created in any case and a
detailed report provides feedback about the individual actions the algorithm performed for test case
creation and scenario mapping. If no mapping is active on invocation of 'Create TestCase
from Scenario' the resulting test case resembles the result of invoking the test case wizard with
the major difference that the test case is created in the target test architecture even though the test case
wizard considers the test architecture not suitable. The 'MappingReport' comment in the created test
case will contain detailed information regarding the successful steps and problems during creation and
mapping.

Mappings can define

• simple mappings of individual classifiers to classifiers,

• splitting instance lines of classifiers into a set of instance lines of particular classifiers – as
needed e.g. for mapping a composite to its parts,

• merging instance lines of a set of classifiers to one instance line of a particular classifier – as
e.g. used in mapping parts to its parent composite.

Once created mappings are part of the model (TestingPofile model element SDMapping) and can be
shared for further test case creations. Definition of mappings is described on page 73.

Mappings refer to the classifiers of instance lines. Mapping of individual messages is currently not
supported.

72

The work flow of sequence diagram test case creation for an existing scenario consists of the following
steps:

• Activation of the desired SDMapping. An SDMapping is activated by setting stereotype
<<ActiveSDMapping>> on the SDMapping. At most one SDMapping must be
stereotyped at a time.
A dedicated helper 'Set as Active SDMapping' unsets the stereotype from all currently
stereotyped SDMappings and activates the selected one.

• The target test architecture is determined by setting one of its code generation configurations
active. The active code generation configuration must be stereotyped
<<TestingConfiguration>> or
<<AnimationBasedTestingConfiguration>> or by a stereotype inheriting from
one of them.

• Invocation of 'Create TestCase from Scenario' on a sequence diagram or a
TestScenario.

The testing cookbook provides examples for reusing scenarios for test case creation.

Definition of mappings for sequence diagram test case creation from existing
scenarios

Testing profile model elements

• SDMapping,

• SDInstanceRealizationMapPair,

• SDInstanceRealizationSplit,

◦ SDInstanceRealizationSplitTarget,

• SDInstanceRealizationMerge,

◦ SDInstanceRealizationMergeOrigin

have been introduced for defining mappings for sequence diagram test case creation from scenarios.

These model elements have – depending on their meaning to the mapping – tags 'Origin' and
'Target' of type ModelElement2.

The top level element of each mapping is an SDMapping

SDMappings can consist of

• SDInstanceRealizationMapPair – simple mappings of individual classifiers to
classifiers, SDInstanceRealizationMapPair has two tags 'Origin' and 'Target' of
type ModelElement. Instance lines referring to 'Origin' shall be mapped to 'Target'.

2Classifier would be more appropriate, but for classifier, the selection dialog doesn't offer files and implicit
objects. Thus, to be able to pick also files and objects from the selection dialog for tags, Classifier is too
restrictive. Instead of restricting the selection, the defined SDMapping is strictly checked on application of the
mapping.

73

• SDInstanceRealizationSplit – splitting instance lines of into a set of instance
lines of particular classifiers. SDInstanceRealizationSplit has tag 'Origin' for
defining, which Classifier shall be split and

◦ arbitrary many SDInstanceRealizationSplitTarget elements, each with a tag
'Target'. The set of SDInstanceRealizationSplitTarget elements belonging
to a SDInstanceRealizationSplit define the set of classifiers to which the
instance lines referring to 'Origin' classifier shall be split.

• SDInstanceRealizationMerge - merging instance lines of a set of classifiers to one
instance line of a particular classifier. SDInstanceRealizationMerge has a tag
'Target' denoting the classifier for which the origins will be merged and

◦ arbitrary many SDInstanceRealizationMergeOrigin elements, each with a tag
'Origin'. The set of SDInstanceRealizationMergeOrigin elements belonging
to a SDInstanceRealizationMerge define the set of elements for which the
referring instance lines shall be merged to an instance line referring to 'Target' classifier.

SDMappings can be created in any package or TestPackage in the model, but it is recommended
to create SDMappings in the target test architecture to which the SDMapping maps classifiers of
scenarios.

SDMappings can be created using the context menu item “Add New->TestingProfile-
>SDMapping” on a package or TestPackage. According to the hierarchy of mapping elements,
SDInstanceRealizationMapPair, SDInstanceRealizationSplit,
SDInstanceRealizationMerge can be added to a SDMapping with the context menu item
“Add New->TestingProfile-> SDInstanceRealizationMapPair”, etc. on a
SDMapping.

Similarly, SDInstanceRealizationSplitTarget and
SDInstanceRealizationMergeOrigin can be added accordingly to
SDInstanceRealizationSplit and SDInstanceRealizationMerge, respectively.

The 'Origin' and 'Target' tags of the mapping elements can be set in the tags-tab of the features
dialog of the respective element: on clicking into the value entry field of the tag, a '…' button appears
on the right side of the entry field. Pressing that '…' button opens a 'Select Value' dialog, which is
basically a mini model browser.

Unfortunately, the tag value is displayed only with its short name in the browser and in the entry field
in the features dialog – and the selected model element is not preselected when opening the selection
dialog again for a defined tag. This makes it difficult to verify correctness of an existing mapping or
even understand its meaning with only the information provided in the browser and in the features
dialog. In order to obtain information about the model paths of the selected classifiers in the mapping
tags, context menu item 'Update Description' can be invoked on SDMapping. This helper will
generate an information report for the mapping using model path names of the tag values and write the
report to the description of the SDMapping.

74

Test Execution
During test execution, TestConductor drives events, operation calls, and dataflows sent
from the test components, test context or environment to SUT objects, and monitors all
messages between objects, actors and environment as specified in the test cases. This
means that TestConductor automatically checks and reports whether the order of messages
sent and received corresponds to the real order in the running application. In addition,
TestConductor monitors the arguments of messages. Since TestConductor checks the
application behavior (against requirements) using animation mechanisms, you must
generate code for the test configuration with animation instrumentation switched on (at
least for test components). See the Rhapsody User Guide for detailed information on
animation settings.

Overview
TestConductor supports several kinds of execution modes

• Execution of code test cases

• Execution of flow chart test cases

• Execution of statechart test cases

• Execution of sequence diagram test cases

• Execution of a test context

• Execution of a test package

• Batch mode execution

The test execution is visualized with an execution dialog. Depending on the type of test
cases the view and interaction possibilities of the execution dialog slightly differ.

Test Configuration
Prerequisite for each execution of an application is a defined Rhapsody code generation
configuration. This configuration must be compileable and linkable.

TestConductor supports test execution against different code generation configurations. In
a (valid) test architecture, located underneath the TestContext there is a
<<TestConfiguration>> dependency targeting a Rhapsody Configuration3. The algorithm
TestConductor uses to choose the appropriate configuration is as following:

3In assertion based test architectures this Rhapsody configuration is required to have the stereotype
<<TestingConfiguration>>.

75

• If the currently active configuration is located in the same component as the
configuration targeted by the <<TestConfiguration>> dependency of the
TestContext use the currently active configuration.

• Otherwise use the configuration targeted by the <<TestConfiguration>>
dependency (Default Testing Configuration) of the TestContext.

One can switch between the code generation configurations by switching the active
Rhapsody configuration from those configurations in the same component as the default
Testing Configuration.

Test Configuration for animation based testing
By using the automatic test architecture generation feature of TestConductor a new
component and a related configuration is automatically added to the model for each test
context. For example a component TCon_CashRegister_Component and a configuration
“DefaultConfig” was generated automatically for the test context TCon_CashRegister.

Also the settings for the code generation are done.

76

Note: For test execution the instrumentation mode must be set to animation, because
TestConductor needs the animation information to observe the behavior of the test
context.

The animation mode is necessary for all elements around the SUT in the test context. In
order to perform (black box) production code testing the animation of the SUT can be
switched off. Thus, the test execution can be done in

• White box mode

• Black box mode

White box mode means that the test context and also the SUT classes are generated with
animation code, while in black box mode the SUT classes are generated without any
animation code information (production code).

White Box Testing
White box testing means that the internal behavior of the SUT can be observed. For
example the message startSession() can be observed in white box mode, because the
SUT was generated with animation information.

77

Build Test Context (White Box)
TestConductor supports the code generation for white box testing via enabling the
animation of the SUT class. To enable white box testing select the property
CPPCG::Class::Animate of the SUT class CashRegister.

78

After switching the property you have to build the test case in order to get animated code.
The result of this process is an executable with animation code for the SUT object.
TestConductor will automatically recognize that the SUT shall be tested in white box
mode.

Production Code (Black Box) Testing
Production code or black box testing means that the internal behavior of the SUT can not
be observed by TestConductor. The objective is to test the interface behavior of a SUT.

Note: You can use the same test cases defined for white box testing. In case of black box
testing TestConductor ignores all messages which communicate between SUT
objects. Only the input and output messages are observed.

Build Test Context (Black Box for animation based testing mode)
Rhapsody supports the code generation for black box testing via disabling the animation
of the SUT class. To enable black box testing deselect the property
CPPCG::Class::Animate of the SUT class CashRegister.

79

80

After switching the property you have to build the test case in order to get non animated
code for the SUT. The result of this process is an executable without animated SUT
objects. TestConductor will automatically recognize that the SUT shall be tested in black
box mode.

Test Case Execution

Test Execution Dialog for code, flow chart, startechart based tests
Flow chart, code, and statechart test cases are merely code based test cases, because
TestConductor uses the code generation capabilities of Rhapsody’s code generator. The
execution dialog enables you to activate the actual test execution and displays the test
results.

If you have modified your SUT or your test context, you must rebuild the code of the test
context before you start actual test execution.

Execute any test case by using the context menu entry Execute TestCase. The
TestConductor execution dialog will open, and the test case execution will be started.

81

Test Execution Dialog
TestConductor displays the assertions defined in a code, flow chart, or statechart test case
at run-time of the test case. During test execution new assertions are listed as soon as they
are reached and checked by TestConductor. Each line in the dialog displays information
about one particular assertion including the final results, as shown in the following figure.

After the test case execution has been terminated you can analyze the results of executed
assertions.

Test Information
TestConductor displays information to analyze the test results. The information columns
are as follows:

• Name—Displays the name of the assertion checked by TestConductor during test
execution.

• File/Iteration—Shows information about the source file name in which the
TestConductor assertion is specified. If a SD test case is executed, it shows the
iteration number of the SDInstance.

• Line/Progress—Shows information about the code line within the file in which the
assertion is specified. If a SD test case is executed, it shows the progress of the SD
instance.

• Result—Shows the result of the assertion. The possible values are PASSED and
FAILED.

Controlling test case execution
The test case execution dialog provides several functions that can be used to control the
test case execution. The functions are available by pressing one of the icons in the top
right corner of the execution dialog.

Test Execution Dialog for sequence diagram based tests
The execution dialog enables you to activate the actual test execution and displays the test
results. You can use test results in order to generate sequence diagrams for further
regression testing or in order to prepare documentation.

If you have modified your SUT or your test context, you must rebuild the code of the test
context before you start test execution.

82

Context menu entry Execute TestCase of a selected test case opens the execution dialog.
For a sequence diagram that is exclusively referenced by only one test case, the execution
dialog can alternatively be opened using the context menu entry Execute TestCase of
TestScenario of the selected sequence diagram. After selecting Execute TestCase, the
execution dialog opens and the test case execution starts.

Test Execution Dialog
During test case execution, the test execution information is displayed in the test execution
dialog.

TestConductor displays the first iterations of sequence diagram instances without specified
ordered predecessors as the initial run-time instances in the execution dialog. During test
execution new run-time instances are listed as soon as their ordered predecessors or
previous iterations have been fully traversed. Each line in the dialog displays information
about one sequence diagram run-time instance, including intermediate and final results, as
shown in the following figure.

Since the test is still running you cannot modify it. However, you can verify the test
configuration, the activation conditions of the sequence diagram instances, and so on.

Test Information
TestConductor displays information to analyze the test results. The information columns
are as follows:

• Name—Shows the list of all run-time instances in the order of their appearance in
the test. You can activate sequence diagram instances sequentially (one after
another) or in parallel (independently).

• Status—Shows the current states of run-time instances during test execution. The
possible values are “NOT ACTIVE”, “ACTIVE”, “PASSED”, and “FAILED”. In the
example, the entire test executes automatically, until it eventually shows the final
result “(Status - FAILED)”, because TestConductor found an error.

83

• File/Iteration—Shows the absolute number of the currently executed run-time
instance of the sequence diagram instance under consideration. At each point in
time, you can have at most one active run-time instance of an sequence diagram
instance. However, over time you can have infinitely many invocations. In the
example of the “tc_SimpleStart” test, only one run-time instance appears in this
field, because you selected single iteration mode. An arbitrary number of run-time
instances can be created during model execution if the execution mode of a
sequence diagram instance is set to multiple iteration with a concrete number.

• Line/Progress—Shows the percentage of message actions that passed successfully
through the tested sequence diagram instance during test execution. A message
action is one of the following:

 Event sending

 Internal event consumption

 Operation call

 Condition mark validation

For example, every event arrow in a sequence diagram specifies two ordered message
actions. TestConductor displays the progress as “percentage X/Y”. The X stands for the
number of actions that passed; Y stands for all the actions specified in the sequence
diagram. For example, this test failed at 75%, and 3 out of 4 actions passed.

Displaying Test Results by witness scenarios
You can display the test results graphically in order to analyze the states of a run-time
instance at different points in time.

For example, to display a failure in the “tc_SimpleStart”, do the following: To see the
graphical representation of the results, select a run-time instance in the list and select
Show as SD from the context menu. A recorded sequence diagram is displayed, showing
the actual order of the messages passed through the model simulation.

The resulting sequence diagram can be used for failure analysis or can be saved for further
documentation.

84

In the sequence diagram created for a run-time instance, the following messages are
displayed:

• Messages that have already occurred in the executed application. Observed
messages are shown in green.

• Messages that are missed. Expected but not seen messages are shown in blue.

• A message that has wrongly arrived or parameter values that do not match.
Messages that are observed in not expected order (failure) are shown in red.
If a parameter or return value of the message is wrong, per default the observed
value is shown in the witness scenario (assertion based testing mode with option
rtc_assert_handling set to by_string).

A red message indicates a failure. In the resulting exported sequence diagram, a red
message is annotated with a short explanation of the failure, which can be one of the
following:

• Sending out of order

• Event Sending - Parameter values do not match

• Event Sending - Parameter values not in range

• Consumption out of order

• Event Consumption - Parameter values do not match

• Event Consumption - Parameter values not in range

• Operation Call out of order

• Operation Call - In Parameter values do not match

• Operation Call - In Parameter values not in range

• Operation Call returned - Return value does not match

• Operation Call returned - Out Parameter values do not match

• Operation Call returned - Out Parameter values not in range

• DataFlow Message - Value does not match

• DataFlow Message - Value not in range

• DataFlow Message out of order

See page 224 for more information about failure analysis.

Note: When doing Show as SD in animation based testing mode, the color coded scenario
is not permanently added to the model. It is intended for analyzing the current test
execution, not for documentation. After closing the diagram or the model the scenario will
be lost.
To permanently add a witness scenario to the model in animation based testing mode,
select Add to model instead of Show as SD in the context menu.
In assertion based testing mode, each time you do a “Show as SD”, TestConductor
automatically adds a color coded scenario to the model. The color coded scenario is added
to the model to the same owner as the original specification scenario. By default, the test
case operation is the owner of the specification scenario.

85

Automatically adding witness scenarios to the model for failed SDInstances
Sometimes it is useful that SDs showing failed SDInstances are added automatically to the
model after test case execution, e.g. for documentation purposes or if test cases are
executed in batch mode and failed test cases are analyzed later. In order to do this in
animation based testing mode, switch on the property
“TestConductor.TestCase.CreateSDForFailedSDInstance”:

Now, after executing a test case that has switched on this property, TestConductor
automatically adds a scenario to the model showing the reason of the test case failure.
Additionally, a dependency is added to the TestResult of the executed test case linking the
TestResult to the added SD. This dependency can be used to navigate directly from the
TestResult to the SDs that have been added for the failed SDInstances.

In assertion based testing mode, switch on the tag
“CreateWitnessScenarioForFailedSDTestCase” on the code generation configuration used
for test execution. If this tag is enabled, TestConductor will automatically create a witness

86

scenario for each executed sequence diagram test case which did not pass and add it to the
model.

Abort Test Execution
In order to abort a running test either click the stop icon in the Rhapsody tool bar or click
the abort icon in the test execution window.

Execution Timeout

Execution timeout for animation based testing
The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value is 600 seconds.

You may define a timeout for every test case separately via the property

TestConductor::TestCase::ExecutionIdleTimeout

In case a timeout is defined and the application does not show any activity for <value of
timeout> seconds the execution of this test case is interrupted. In this case, this test case
will be marked as “timeout” in the result report.

Test Execution Report
After the execution of a test case has finished and the execution dialog has closed, an
execution report is written into a HTML file. This file is added to the test case as a
controlled file.4 If a report file already exists it is overwritten, only the report of the last
execution is stored in the model. If a test case is executed for multiple code generation
configurations, for each configuration a separate test execution report is stored in the
model. This way the test results with different settings (debug, release) or from different
execution environments (host, target) can be compared.

TestConductor also stores a tag Verdict below the linked report file, which stores the result
of the test case execution.

4Note that with the property TestConductor.Settings.ReportLocation (see page 134) a user can specify a
dedicated report location)

87

Possible values are: "Passed", "Failed", "Aborted", "Timeout" and "Undefined" and
“Error”.

A double click on the test result “TCon_CashRegister__tc_SimpleStart_0.html”
opens the linked HTML test report.

88

Debugging test cases
When a test case fails one can use TestConductor’s debugging capabilities in order to find
out the reason for the fail. In order to turn on test case debugging, one has to turn on
“Debugging mode” in the test case execution window:

89

After turning on debugging mode, one can restart the test case, e.g. by pressing the “Start”
icon in the execution window. In contrast to normal test execution mode, in debugging
mode the test execution does not progress automatically but can be controlled by using
Rhapsody’s animation toolbar. For instance, one can step through the test case by using
multiple “Go Step” commands in the animation toolbar. In the execution window, one can
see the current progress of the test case, and in parallel one can use Rhapsody’s animation
features (e.g. animated sequence diagrams or animated statecharts) to inspect the model
during debugging of the test case. Besides “Go Step”, also all other animation commands
like “Go Idle” etc. are available, e.g. one can add tracer commands etc.
This interactive, step-by-step execution of test case is available both for animation based
and assertion based testing mode. But is is available only when testing applications with
animation instrumentation.
Debugging a test case is possible only when executing a single test case. When executing
a test context or test package the Debug button is disabled (and switched off).

Using breaks and tracer commands during debugging
In debugging mode, in addition to stepping through the test case execution using
Rhapsody’s animation toolbar, one can also define breaks and tracer commands in the test
cases. When a break command is reached, the test case execution is breaked at this
location. When a tracer command is reached, it is simply executed. Both breaks and tracer
commands can be used in all kinds of test cases.

1. Defining breaks and tracer commands in code/flowchart/statechart test cases:

To define a break in a code, flowchart or statechart test case, one has to write the
macro “RTC_BREAK” (C/C++) resp. “TestConductor.BREAK()”. When the test
case execution reaches the break, it is executed and the test case execution is
stopped. One can proceed the test case execution by using Rhapsody’s animation
toolbar (e.g. by pressing “Go Step” or “Go Idle” etc.). To execute a specific tracer
command during test case execution, one has to use the macro

90

“RTC_TRACER_COMMAND(cmd)” (C/C++) resp. the function
“TestConductor.TRACER_COMMAND(cmd)”. For details about the supported
syntax of the “cmd” argument please look into Rhapsody’s User Guide. When the
test case execution reaches the specified tracer command, it is simply executed as
any other tracer command that was entered directly in Rhapsody’s animation
toolbar.

2. Defining breaks and tracer commands in sequence diagram test cases:

To define a break in a sequence diagram test case, one has to add a condition on
one of the life lines in the sequence diagram. In the condition, one has to write
“RTC_BREAK”. When executing the test case in debugging mode, the test case
execution stops when the break is reached. In Rhapsody’s animation output tab the
information “Reached TestCase breakpoint” is printed.

To define tracer commands in a sequence diagram test case, one has to add a
condition on one of the life lines in the sequence diagram. In the condition, one
has to write “RTC_TRACER_COMMAND”. When executing the test case in
debugging mode, the test case execution executes the specified tracer command
when the execution reaches the position of the tracer command.

91

Test Context Execution

Starting Test Execution
One kind of batch execution is the execution of a complete test context. It will then
execute all test cases belonging to a test context.

• Right-click on the test context TCon_CashRegister and select Update
TestContext. This updates all necessary driver and stub operations derived from
the defined sequence diagram test cases within the test context.

• Right-click on the test context TCon_CashRegister and select Build
TestContext. This re-generates the necessary code for all elements of the test
architecture and starts the compile and link process for the test architecture.

• Right-click on the test context TCon_CashRegister and select Execute
TestContext. This starts the batch execution for all defined test cases within the
test context.

If the user selects a test context and invokes its execution, all test cases of this test context
are executed in a sequence. To terminate the execution of a test context or a test package,
press the abort icon in the test execution window.

92

Stopping Test Execution
To terminate the execution of a test context or a test package, press the abort icon in the
test execution window.

Execution Timeout
The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value is 600 seconds.

You may define a timeout for this batch mode execution of test cases individually per test
case. This can be done via the property

TestConductor::TestCase::ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of
timeout> seconds the execution of this test case is interrupted and the next test case is
started. In this case, this test case will be marked as “timeout” in the result report.

Ordering of Test Cases
The order of the test cases inside the test context (similar to the “Edit Operations Order”
in the Rhapsody browser) can be changed. In this way you can influence the execution
order of the test cases.

93

Per default the test cases are sorted and executed in alphabetical order.

Test Execution Report
After execution of each test case its result HTML report is written. The file is added to the
test case as controlled file.5

After execution of all test cases an execution report of the whole test context is written
into an HTML file. The file is added to the test context as controlled file.

If a report file already exists it is overwritten, only the report of the last execution is stored
in the model. If a test case or test context is executed for multiple code generation
configurations, for each configuration a separate test execution report is stored in the
model. This way the test results with different settings (debug, release) or from different
execution environments (host, target) can be compared.

5Note that with the property TestConductor.Settings.ReportLocation (see page 134) a user can specify a
dedicated report location)

94

• A double-click on the test result “TCon_CashRegister_6.html” opens the
linked test report.

Test Package Execution

Starting Test Execution
One kind of batch execution is the execution of a complete test package. It will then
execute all test cases underneath all test contexts belonging to a test package.

• Right-click on the test package TPkg_CashRegister and select Update
TestPackage. This updates all necessary driver and stub operations derived from
the defined sequence diagram test cases within the test package.

• Right-click on the test package TPkg_CashRegister and select Build
TestPackage. This re-generates the necessary code for all elements of the test
architectures and starts the compile and link process of all test architectures.

• Right-click on the test package TPkg_CashRegister and select Execute
TestPackage. This starts the batch execution of all defined test cases within the test
package.

95

If you select a test package and invoke its execution, each defined test context of this test
package is executed one after the other. The procedure is almost like the execution of a
test context, except the following differences:

• If one test context cannot be executed, this test context is skipped, the reason for
the problem is written to the result report, and the next test context is executed.

Stopping Execution
To terminate the execution of a test context or a test package, press the abort icon in the
test execution window.

Execution Timeout
The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value is 600 seconds.

You may define a timeout for this batch mode execution of test cases individually per test
case. This can be done via the property

TestConductor::TestCase::ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of
timeout> seconds the execution of this test case is interrupted and the next test case is
started. In this case, this test case will be marked as “inconclusive” in the result report.

96

Test Execution Report
After the execution of all test cases, the execution report is written into an HTML file.
This file is added to the test package as a controlled file.6 A report for each test context and
test case that has been executed was also created during execution.

If a report file already exists it is overwritten, only the report of the last execution is stored
in the model. If a test case or test context or test package is executed for multiple code
generation configurations, for each configuration a separate test execution report is stored
in the model. This way the test results with different settings (debug, release) or from
different execution environments (host, target) can be compared.

• A double click on the test result “Result_0.html” opens the linked test report

6Note that with the property TestConductor.Settings.ReportLocation (see page 134) a user can specify a
dedicated report location)

97

98

Assertion based testing mode
Before Rhapsody 7.6, TestConductor only supports so-called animation based testing
mode. In animation based testing mode, the scheduling and arbitration, i.e., the way
TestConductor decides whether a test case is passed or failed, is based on animation
messages coming from Rhapsody’s animation feature. Starting from Rhapsody 7.6,
TestConductor also supports so-called assertion based testing mode. In contrast to
animation based testing mode, in assertion based testing mode both scheduling and
arbitration of test cases is directly controlled by assertions that are compiled into the test
executable, i.e., scheduling and arbitration of test cases is independent from Rhapsody’s
animation feature. Since in assertion based testing mode the test cases are part of the
application itself, observation of messages or behavior in the initialization of the
application is limited. The test case arbitration and scheduling is not initialized before
other parts of the application. Hence, for testing system setup using the assertion based
testing mode, it is recommended to provide the model with an initial trigger for starting
system setup.

In general, both animation based testing and assertion based testing mode provide the
same set of features, however, there are still some differences because of the underlying
testing approach. In this section, we highlight the characteristics of assertion based testing.

Choosing between testing modes
By default new test architectures created with Rhapsody 7.6 or higher are created with
testing mode set to assertion based testing, i.e., the property
“TestConductor.Settings.TestingMode” is set to “AssertionBased” on the top level test
package and the architecture is created accordingly. For existing test packages that have
been created with a Rhapsody version older than 7.6 this property is set to
“AnimationBased”, i.e. for such test architectures the animation based testing mode is
applied and the tests are executed the same way as before, based on Rhapsody animation
messages.

The mode for newly created test architectures can be defined in the TestConductor main
dialog. Open the TestConductor main dialog by choosing “TestConductor” from the tools
menu. In the upcoming dialog, select the testing mode you want TestConductor to apply
on newly created test architectures.
This setting does not affect the mode of any existing test architecture in the model.
TestConductor supports using animation and assertion based test architectures in the same
model but it is not supported to mix these modes in one test architecture. Because of the
different structure of the test architectures for each mode, it is not supported to switch an
existing test architecture to a different mode by setting the TestingMode property on the
test package. For some kinds of animation based test architectures, TestConductor
supports an automatic migration of the test architecture to assertion based testing mode.
See “Migrating animation based test architecture to assertion based test architecture” on
page 100.

99

Migrating animation based test architecture to assertion based test
architecture

There are several differences between an assertion based and an animation based test
architecture, so an animation based test architecture cannot be converted into an
animation based test architecture just by changing the property
“TestConductor.Settings.TestingMode”. Instead, it is recommended to create a new test
architecture and to create new test cases based on the original ones.

To manually migrate an animation based into an assertion based test architecture, the
following approach should be applied:

• Make sure the project property “TestConductor.Settings.TestingMode” is set to
“AssertionBased” (see section “Choosing between testing modes” on page 99).

• Create a new test architecture for the class, file or object which was tested by the
animation based test architecture.

• Migrate the test cases of the original test architecture one after another. For the
different kinds of test cases, the following migration steps should be applied:

◦ Code based test cases
A code based test case can be copied to the new assertion based test
architecture. It is recommended to inspect the code of the test case and check
for references of test components which might have a different name.

100

◦ Flowchart based test cases
A flowchart based test case can be copied to the new assertion based test
architecture. It is recommended to inspect the code of the test case and check
for references of test components which might have a different name.

◦ Statechart based test case
A statechart based test case should be migrated this way:

▪ Create a new test case by applying the helper “Create Statechart
TestCase” on the new test context.

▪ Select all elements in the new statechart and delete them

▪ Open the statechart of the original test case

▪ Select all elements in the old statechart and copy them into the new
statechart

▪ Adjust the first transition in the statechart (from state “Initial” to state
“state_1”):
For language C++: Select “evTCStart” from the new test package as the
trigger of the transition and remove the line “itsTCon->rtc_init()” from
the Action of the transition.
For language C: Select “evTCStart” from the new test package as the
trigger of the transition and remove the line
“TCon_<name>_rtc_init(me->itsTCon)” from the Action of the transition.

▪ Adjust the last transition in the statechart (from state “final” to the
termination state):
For language C++: In the Action of the transition, change line
“itsTCon->rtc_exit()” to “itsTCon->finishTestCase()”.
For language C: In the Action of the transition, change line
“TCon_<name>_rtc_exit(me->itsTCon)” to
“Tcon_<name>_finishTestCase(me->itsTCon)”.

◦ Sequence diagram based test case
A sequence diagram based test case should be migrated this way:

▪ If the old and the new test architecture have similar test components, the
test case wizard can be used to create a new test cased based on the test
scenario of the old test case. To do this, right click the original test
scenario and select “Create TestCase...”. In the dialog, the destination test
context can be selected: If the new test context of the assertion based test
architecture is listed, select the new test context and confirm the creation
of a new test case by clicking the Ok button. The wizard will create a new
test case in the animation based test architecture, based on the original test
scenario.

▪ If the wizard cannot match the test component instances of the animation
based test architectures with the test component instances of the assertion
based test architecture, the sequence diagram based test cases need to be
migrated manually. To do so, create a new new test case by applying the
helper “Create SD TestCase” on the new test context. Then add the
messages of the original test scenario one after another.

101

Automatical Migration of animation based TestArchitectures to
assertion based Testing mode

When updating a TestContect of an animation based TestArchitecture, TestConductor
checks for applicability of automatical migration to assertion based testing mode.
Automatical migration is applicable to animation based TestArchitecture whose SUT is
only connected to TestComponents via ports or whose SUT only has instantiated
associations to interfaces.
If the TestArchitecture fulfills these applicability criteria, automatical migration is offered
to the user in a dialog. If the user confirms the attempt of migration, a new
TestArchitecture is created from a copy of the animation based architecture. A report of
the migration steps – including warnings and potential problems – is issued on the console
and stored additionally in a comment below the newly created TestContext. After
application of migration or if the user doesn't confirm the attempt to migration, property
TestConductor.TestContext.MigrateToAssertionBasedMode (with value 'False', unchecked
boolean property) is added to the TestContext of the animation based old
TestArchitecture. Automatical migration isn't offered to the user for this TestContext again
unless property TestConductor.TestContext.MigrateToAssertionBasedMode is checked,
i.e.set to 'True'.

In particular SD TestCases may be affected by several limitations of the assertion based
TestingMode:

• assertion based execution only supports linearly ordered SDInstances.

• assertion based execution only supports 'driving and monitoring' SDInstances.

• assertion based execution only supports SDTestCases with single SDInstances.

• multiple iteration of SDInstances isn't supported in assertion based execution.

• ordered predecessors aren't supported by assertion based execution.

Potential problems are reported on the console and these migration messages are also
recorded in a comment that is stored below the TestContext in the new TestArchitecture
obtained by automatical migration.Note, that most TestConductor.TestCase properties
aren't regarded in assertion based execution.

Differences between animation and assertion based testing mode
The table below is listing the main differences between the two testing modes.

Animation based testing mode Assertion based testing mode

Not certified. Certified for IEC 61508 and derived standards.

No validation suite available. TestConductor validation suite for on site
qualification available.

Based on Rhapsody animation feature: The test
architecture needs to be instrumented with
animation instrumentation.

No animation instrumentation needed.

Allows white box testing if the SUT is
instrumented with animation instrumentation.

Black box testing (optional grey box testing using
special TestArchitecture).

102

Animation based testing mode Assertion based testing mode

Serialization and unserialization functions needed
to validate and inject message arguments.

Serialization or unserialization functions not
needed.

Supports computation of model coverage if the
SUT is instrumented with animation
instrumentation.

Supports computation of model coverage if the
SUT is instrumented with animation
instrumentation.

No computation of code coverage (only with third
party tools).

Supports computation of code coverage.

Test scheduler and arbiter are in TestConductor
tool.

Test scheduler and arbiter are part of the tested
application.

SD based TestCases can have multiple
SDInstances.

SD based TestCases can have only one
SDInstance.

No support of SD operators in SD based
TestCases.

Support of SD operators in SD based TestCases
(not all).

Available for C++, C, Java, Ada. Available for C++, C.

Computing Model Coverage during Test Execution
When executing TestCases, i.e., either individual TestCases, a TestContext or a
TestPackage, TestConductor provides the possibility to compute which model parts of the
SUT are executed during the execution of the TestCases. This information is provided by
an HTML report that is created and added to the model after the execution of the test
cases. The report contains information about accumulated coverage of states, transitions,
events and operations (except constructors and destructors) of all SUT classes used in the
TestArchitecture.

Computing Model Coverage for single Test Cases
For animation based testing (TestConductor.Settings.TestingMode == AnimationBased), to
compute the model coverage of single test cases, switch on the property
“TestConductor.TestCase.ComputeCoverage”:

103

Alternatively, computation of model coverage can be enabled also for animation based
testing mode by switching on tag “ComputeModelCoverage” on the code generation
configuration used for testing.

Now, each time you execute the test case, in addition to the test case execution report,
TestConductor creates a model coverage report and adds it to the model7. If a test case is
executed for multiple code generation configurations, for each configuration a separate
model coverage report is stored in the model.

7Note that with the property TestConductor.Settings.ReportLocation (see page 134) a user can specify a
dedicated report location)

104

Coverage Items
Model elements which are subject to the coverage are the operations, event receptions and
elements in behavior specifications (statecharts or activities) of the classes for which
coverage is measured (for the selection of classes for the coverage measurement see
section 'Choosing the Coverage Kind for Model Coverage'). If an operation is specified by
a behavior diagram8, this behavior is considered as well. Of a behavior all vertexes and
transitions contained in the behavior are considered. If a coverage item is marked as
'covered' this means that the corresponding code generated for the model element has been
traversed during the execution of the test, e.g. an operation has been called or a state in a
statechart has been reached9. The coverage information is from the model view, there is no
information about how much of the user code has been traversed, but only that the model
element was used. For a code view with detailed information about the coverage of the
generated and the user code you need to use code coverage.

8For operations only token oriented activities are allowed.
9For some statechart and activity elements which are directly dependent of other elements Rhapsody does not
generate animation messages which are used by TestConductor to measure the coverage. For these elements
TestConductor applies a set of dependency rules to derive the coverage.

105

Limitations:
• Overridden operations can not be distinguished
• Overloaded operations can not be distinguished
• Model elements for which animation is switched off appear as 'not covered' even

if they were used in the test execution.

Coverage Measurement
TestConductor uses the Rhapsody animation to determine the coverage of model
elements, therefore usage of model coverage requires the 'Instrumentation Mode' of the
configuration set to 'Animation'. With this setting the Rhapsody code generation
instruments the code with additional animation code, TestConductor listens at runtime to
animation messages sent by the application and uses these messages to determine the
model coverage. There are some elements for which the Rhapsody code generation does
not generate explicit animation messages because the code is included in a block of an
element with animation message (e.g. in transition chains with junction connectors only
the first transition is annotated with animation code, the code of the other transitions is
included in the code block of the first transition). For these scenarios TestConductor
applies a set of dependency rules to derive the coverage of these elements from the
coverage of elements with animation message.

Traceability of Coverage Items
The html report contains links for the navigation from the report to the Rhapsody model:
When clicking on the link of an operation, event, state or transition, the corresponding
model element is highlighted in the Rhapsody browser.
Note: This is not supported for Internet Explorer 6, to be able to use this feature, Internet
Explorer 7 or higher is needed. Also supported browsers are Firefox 3 and higher, Opera
and Chrome. Highlighting model elements will work only if Javascript is enabled in the
browser and no popup blocker is active. For Internet Explorer 7 and up, protected mode
has to be disabled (Tools->Internet Options->Security).

To highlight the model element, a Javascript script is used which sends a command to the
running Rhapsody application using a TCP/IP port. Per default, port number 50001 is used
for this communication. If this port is not available or when running different instances of
Rhapsody on the same machine, the port number can be changed so each running instance
of Rhapsody can communicate with the individual model coverage report. To do this, open
the TestConductor main dialog by Rhapsody menu Tools->Test Conductor, and change the
“Port number for coverage reports” and click OK. After this, double click the
ModelCoverageResult in the Rhapsody model to open the report with the modified port
number. Allowed port numbers are between 1024 and 65535.
To change the port number when the report is already opened in the browser, change the
port in the TestConductor main dialog and also in the edit field in the html report to the
same number.

A different default port number can be defined using the environment variable
PORTSNOOPERPORT: Set this variable to the new default number before starting
Rhapsody.

106

Choosing the Coverage Kind for Model Coverage

TestConductor supports four different kinds of coverage measures, which can be chosen
using property TestConductor.TestCase.CoverageKind (if
TestConductor.Settings.TestingMode == AnimationBased) or tag “CoverageKind” of the
testing configuration (if TestConductor.Settings.TestingMode == AssertionBased)

• SUT flat (Default): Only coverage of the toplevel class of the SUT is measured,
i.e. states, transitions, and operations of parts of the SUT are not considered.
Coverage of model elements of test components is also not measured.

• SUT hierachical : Coverage of the SUT is measured in a hierarchical manner, i.e.
also states, transitions, and operations of parts of the SUT are hierarchically

107

regarded for coverage measure. Coverage of model elements of test components is
again not measured.

• TestContext flat: Coverage is measured in terms of all states, transitions, and
operations defined at the first decomposition level of the test context, i.e. all
states, transitions, and operations of the direct parts of the test context are
considered.

• TestContext hierarchical: all states, transitions, and operations in the hierarchal
structure of the test context are considered in coverage measure.

Computing cumulative Model Coverage for TestContexts
To compute the model coverage for TestContexts, for at least one of the TestCases of the
TestContext the property “TestConductor.TestCase.ComputeCoverage” must be switched
on (if TestConductor.Settings.TestingMode == AnimationBased) or the tag
“ComputeModelCoverage” (if TestConductor.Settings.TestingMode == AssertionBased)
must be turned on. However, if the property is switched on for more than one test case of
the TestContext, TestConductor computes the cumulative coverage of all executed test
cases that have switched on this property and stores the result as a coverage report
underneath the TestContext. In order to compute the cumulative coverage of all test cases
of a TestContext this property has to be switched on for all test cases belonging to the
TestContext. A simple way to do it is to set the property directly for the TestPackage that
contains the TestContext:

108

Alternatively, computation of model coverage can be enabled also for animation based
testing mode by switching on tag “ComputeModelCoverage” on the code generation
configuration used for testing.

Now, when executing the complete TestContext, a coverage report is generated for each of
the contained test cases, and a cumulative coverage report is generated for the
TestContext. If a test context or test case is executed for multiple code generation
configurations, for each configuration a separate model coverage report is stored in the
model.

109

Computing cumulative Model Coverage for TestPackages
Analogously to computing the cumulative coverage of TestContexts, TestConductor also
provides the possibility to compute the cumulative coverage of TestPackages. To compute
the model coverage for TestPackages, for at least one of the TestCases of the TestPackage
the property “TestConductor.TestCase.ComputeCoverage” must be switched on (if
TestConductor.Settings.TestingMode == AnimationBased) or the tag
“ComputeModelCoverage” (if TestConductor.Settings.TestingMode == AssertionBased)
must be turned on for the code generation configurations being used for testing. However,
if the property is switched on for more than one test case of the TestPackage,
TestConductor computes the cumulative coverage of all executed test cases that have
switched on this property and stores the result as a coverage report underneath the
TestPackage. In order to compute the cumulative coverage of all test cases of a
TestPackage this property has to be switched on for all test cases belonging to the
TestPackage. A simple way to do it is to set the property directly for the TestPackage for
which the cumulative coverage shall be computed.

Alternatively, computation of model coverage can be enabled also for animation based
testing mode by switching on tag “ComputeModelCoverage” on the code generation
configurations used for testing.

110

Computing Requirement Coverage

Computing Requirement Coverage for Test Cases and TestContexts
Beyond measuring and reporting model element coverage for executed test cases and test
contexts, TestConductor offers also the measurement of the dynamic requirement coverage
for the executed test cases and test contexts.

Precondition for measuring requirements coverage by individual test cases and test
contexts is the linkage of operations, states and transitions with requirements in the
Rhapsody model. Stereotyped dependencies targeting requirements can be added to model
elements in order to establish e.g. traceability or to express that certain model elements
contribute to establishing a particular requirement.

Note: For the animation based testing mode the stereotype
<<AnimationBasedTestingConfiguration>> must be set on the code generation
configuration in order to have an access to the tags and properties necessary to enable and
customize computation of requirement coverage.

Requirement coverage measurement is enabled by setting both tags
“ComputeModelCoverage” and “ComputeRequirementCoverage” on the code generation
configuration.

The figure above shows <<statisfy>> dependencies from state lowering to requirements
req1, req2, and req3 and <<trace>> dependencies from state stop to requirement req3.

111

TestConductor optionally regards such dependencies in order to calculate requirement
coverage based upon model coverage information. The user can define the stereotypes to
be considered in requirement coverage calculation using property
ModelBasedTesting.Settings.StereotypesForDependenciesTo
Requirements of the code generation configuration. Consideration of multiple
stereotypes can be achieved by listing the stereotypes in a comma separated list. Per
default, stereotypes trace and satisfy are regarded.

TestConductor provides also two properties for the user in order to configure the
requirement coverage scope for TestConductor. So the user can specify the packages (and
their sub-packages), whose requirements shall be regarded at the requirement coverage
calculation within the property 'ModelBasedTesting.Settings.Requirement
CoverageRequirementsScope' of the code generation configuration. The setting of
multiple packages (and their sub-packages) can be archived via a comma separated list of
the fully qualified package paths, e.g. "RequirementsAnalysisPkg::Requi
rementsPkg::SecSysReqs,TestPkg::RequirementsPkg::SecSysTestR
eqs". The second property 'ModelBasedTesting.Settings.Requirement
CoverageRegardedTags' of the same code generation configuration, specifies via a
"requirement tag with name and value" those requirements within the pre-selected
packages, who shall be considered at the requirements coverage calculation. Again the
setting of multiple "requirement tags with name and value" can be archived via a comma
separated list, e.g. "RequirementType=functional,RequirementType=
additional".

TestConductor provides additionally two properties for the user in order to configure the
model elements scope for the TestConductor requirement coverage calculation. So the user
can specify the packages (and their sub-packages), the classes (blocks) or actors, whose
model elements shall be regarded at the requirement coverage calculation within the
property 'ModelBasedTesting.Settings.RequirementCoverageModel
ElementsScope' of the code generation configuration. The setting of multiple packages
(and their sub-packages), classes (blocks) or actors can be archived via a comma separated
list of the fully qualified package, classes (blocks) or actor paths, e.g. "DesignSynthe
sisPkg::SecSysControllerPkg::SecSysController,ActorPkg::Card
ReaderEntry". The second property 'ModelBasedTesting.Settings.Requi
rementCoverageExcludedMetaClasses' of the same code generation
configuration, specifies via an "excluded meta classes tag with name and value" those
meta classes within the pre-selected packages, classes (blocks) or actors, who shall be
excluded from (not considered at) the requirements coverage calculation. Again the setting
of multiple "excluded meta classes tags with name and value" can be archived via a
comma separated list, e.g. "Attribute,Class,Event".

TestConductor distinguishes two kinds of requirement coverage by test cases:

full coverage
All model elements depending on a particular requirement (w.r.t. specified dependency
stereotypes) are covered by a test case or test context. The test case or test context then fully
covers the requirement - a dependency stereotyped fully on the requirement is added to the
Requirement Coverage Result Report of the test case or test context.

partial coverage
Not all model elements depending on a particular requirement (w.r.t. specified dependency
stereotypes) are covered by a test case or a test context. The test case or test context then only
partially covers the requirement - a dependency stereotyped partially on the
requirement is added to the Requirement Coverage Result Report of the test case or test context.

112

Transitivity of Dependencies (Refinement of model elements and
requirements)

Via the TestConductor property "ModelBasedTesting.Settings.Requirement
CoverageTransitivityOfDependencies" the support for the refinement of model
elements and the refinement of requirements (for the TestConductor requirement coverage
calculation) can be switched on or off.

The figure above shows an application for the refinement of requirements and model elements.
If transitivity of dependencies is switched off, ME_a1 is connected to Req_1.2, ME_a2 is
connected to Req_2.2 and ME_a3 is connected to Req_2.3. But if transitivity of dependencies is
switched on, the refinements of ME_a1 by ME_b1 and of ME_a3 by ME_b2 and ME_b4 are
considered during the requirement coverage calculation. This means, the requirement Req_2.3
for example is only fully covered by a test case or a test context if both model elements ME_b2
and also ME_b4 are covered by this test case or test context (if class B is within the model
element scope).
If transitivity of dependencies is switched off the connections between the requirements
Req_2.1, Req_2.2 and Req_2.3 to the requirement Req_2 are not considered. But if transitivity
of dependencies is switched on the requirement Req_2 is refined by the requirements Req_2.1,
Req_2.2 and Req_2.3 and these refinements are considered at the requirement coverage

113

calculation. This means, the requirement Req_2 is only fully covered by a test case or a test
context, if the requirements Req_2.1, Req_2.2 and Req_2.3 are as well fully covered by this test
case or test context (if Req_2 is within the requirements scope).

An example explaining the transitivity of dependencies related to the handling of refined model
elements: A model element "A1" (class A) has a satisfy dependency to a requirement "req_17".
And there is a refinement of the model element "A1", as the two model elements "B1" and "B2"
(class B) have both a trace dependency to the model element "A1". And in the same way model
element "B1" is refined by the model elements "C1" and "C2" (class C) and model element
"B2" is refined by the model elements "C3" and "C4" (class C). If the property
"RequirementCoverageTransitivityOfDependencies" is set and
"RequirementCoverageModelElementScope" is only set to "class B", then the requirement
"req_17" is fully covered by a test case, if the test case covers all of the model elements "B1"
and "B2". But if the test case covers only one of the model elements "B1" and "B2", then the
requirement "req_17" is only partially covered.

An example explaining the transitivity of dependencies related to the handling of refined
requirements: A model element "A1" (class A) has a satisfy dependency to a low level
requirement "req_LL_11". And this low level requirement "req_LL_11" has on his part again a
satisfy dependency to a high level requirement "req_HL_01". A model element "A2" (class A)
has a satisfy dependency to a low level requirement "req_LL_22". And this low level
requirement "req_LL_22" has on his part again a satisfy dependency to a high level requirement
"req_HL_01". If the property "RequirementCoverageTransitivityOfDepen- dencies" is set and
the high level requirement "req_HL_01" is within the requirement scope, then this high level
requirement "req_HL_01" is fully covered by a test case, if this test case covers both the low
level requirements "req_LL_11" and also "req_LL_22" fully. But if a test case covers either the
low level requirement "req_LL_11" or "req_LL_22" only partially, then this high level
requirement "req_HL_01" is also only partially covered by this test case.

Computing Code Coverage
Computation of code coverage is supported only for Rhapsody in C++ and Rhapsody in C
when using assertion based testing mode.

Integration with CUnit/CppUnit Framework
In the area of testing, CUnit and CppUnit frameworks have become de-facto standards in
recent years. Many developers and companies have already organized their testing process
using these frameworks. In order to ease migration to a model driven development
approach, TestConductor offers a test integration for Rhapsody with the CUnit and
CppUnit frameworks.

• CUnit integration has been developed and tested using CUnit-2.1-0.

• CppUnit integration has been developed and tested using cppunit-1.12.1.

This integration is realized using stereotypes defined in the TestingProfile. The stereotypes
for CUnit integration are defined in subpackage RTC::TestArchitecture::CUnit, whereas
the sterotypes for CppUnit integration are defined in subpackage
RTC::TestArchitecture::CppUnit.

114

Stereotypes for CUnit integration
Stereotype CUnitContext can be applied to a class and sets some properties for CUnit
testing integration. You can change a test context to CUnitContext – and vice versa - by
right-clicking a test context and secting “Change to > CUnitContext”.

Stereotype CUnitConfig can be applied to a configuration and provides a set of tags for
customization of CUnit testing integration with Rhapsody. CUnitConfig overrides
property CG.Configuration.StartFrameworkInMainThread, s.t. the Rhapsody framework
ist started in a new thread and control returns to the main thread. Right after starting the
framework either a single test case is invoked or all test cases of the test context (only for
CUnitContextExecutionKind == NoRestart).

“Update TestCase”, “Update TestContext”, and “Update TestPackage” with respect to a
CUnitContext (refering to a confioguration stereotyped <<CUnitConfig>>) will
instrument the CUnitContext with a set of operations:

• int cunit_init()—CUnit requires an initialization and a cleanup function for each
test suite. These functions are provided by TestConductor as prototypes, which can
be used to add application or test specific code.

• int cunit_clean()--the test suite cleanup function.

• void cunitmain(char* tc_name)—the main function for CUnit testing. The
function consists of :

 a framework initialization part

 a test suite specific part – i.e. a CUnitContext specific part

 a testoutputter definition part

 and a execution and result computation part – refered to as tail

Each of these parts can be customized using a tag of the <<CUnitConfig>>
configuration.

• <testcontext-type>* setTestContext(<testcontext-type>* context)—Since test
cases may not have arguments in the CUnit framework,, they can not be invoked
with the ‘me’-pointer by the test context. Hence, a static variable is required, that
allows access to the test context data structure within test cases. Test cases can get
access to this data structure using the test context function ‘theTestContext()’.
Function ‘setTestContext()’ sets a static pointer variable, which then can be
returned by ‘theTestContext()’.

• <testcontext-type>* theTestContext()— see above.

• Init()—initializer that, in particular, invokes ‘setTestContext()’ with the ‘me’-
pointer in order to enable access to the test context data structure from within test
cases (see above).

The customization tags of stereotype CUnitConfig are:

• CUnitContextExecutionKind-- Possible values: ‘RestartExecutable’,’NoRestart’.
This tag defines whether the application is restarted for each testcase, or all test
cases are executed within a single invokation of the application. Default is
‘RestartExecutable’.

• CUnitIncludePath—defines the path to the headers of the CUnit framework. For
path definition, a symbolic variable $CUNITINSTALLDIR can be used. This
symbolic variable is textually substituted by the contents of tag CUnitInstallDir

115

upon “Update TestCase”, “UpdateTestContext”, and “Update TestPackage”,
respectively. Default: “$CUNITINSTALLDIR/CUnit/Headers”.

• CUnitInstallDir—the full path to the installation directory of the CUnit
framework. For definition of the path, envronment variables, e.g. “$
(CUNITHOME)” can be used . Default: “$(CUNITHOME)”.

• CUnitLibPath—the full path to the CUnit framework library file. Default:
“$CUNITINSTALLDIR/CUnit/lib/CUnit.lib”.

• CUnitMainInit— the initialization part of the cunitmain() function that will be
generated by “Update TestCase”, “Update TestContext”, and “Update
TestPackage”, respectively. For the default, please consult the TestingProfile.

• CUnitMainOutputter— test outputter specific initializations.
Default: “$RTCAUTOGENERATE”. If CUnitMainOutputter contains exactly this
string, TestConductor will automatically generate the respective code according to
the chosen output format.

• CUnitMainTail— defines the execution and result computation part of
‘cunitmain()’. For the default, please consult the TestingProfile.

• CUnitReportKind—possible values: ‘xml’, ‘html’, ‘text’. This tag defines the
result report format. Default: ‘html’

• InvokeExecutable—the content of this tag will be written to property
C_CG.Configuration.<activeEnvironment> and defines how the application will be
invoked.
Default: “$executable $TestCase”, where “$TestCase” will be textually substituted
by the “Update ...” functionality with the name of the selected test case or “all”, if a
test context is going to be executed.

• PostFrameworkThreadSegment— the contents of this tag will be written to
property CG.Configuration.PostFrameworkThreadSegment. Using this tag it can
be customized how ‘cunitmain()’ will b invoked. Default: “char* tcname = argv[1];
cunitmain(tcname);”

• ReportFilename— the filename prefix of the report generated by CUnit. Default:
“$CONFIGDIR/report”, where “$CONFIGDIR” is a symbolic variable denoting
the code generation configuration refered to by the test context. “$CONFIGDIR”
will be textually replaced by the “Update ...” functionality.

• ResultFilename— the filename for the overall ‘pass/fail’ result. A CUnit test case
execution passes, iff all executed assertions pass; a CUnitContext execution passes,
iff all test cases pass; a TestPackage passes, iff all CUnitContexts pass.
Default : “$CONFIGDIR/result.txt”

• XSLTFile--- full path to the xslt file using which a html report can be generated
from a CUnit xml report.
Default : “$CUNITINSTALLDIR/Share/CUnit-Run.xsl”

Stereotypes for CppUnit integration
Stereotype CppUnitContext can be applied to a class and sets some properties for CppUnit
testing integration. You can change a test context to CppUnitContext – and vice versa - by
right-clicking a test context and secting “Change to > CppUnitContext”.

Stereotype CppUnitConfig can be applied to a configuration and provides a set of tags for
customization of CppUnit testing integration with Rhapsody. CppUnitConfig overrides

116

property CG.Configuration.StartFrameworkInMainThread, s.t. the Rhapsody framework
ist started in a new thread and control returns to the main thread. Right after starting the
framework either a single test case is invoked or all test cases of the test context (only for
CppUnitContextExecutionKind == NoRestart).

“Update TestCase”, “Update TestContext”, and “Update TestPackage” with respect to a
CppUnitContext (refering to a confioguration stereotyped <<CppUnitConfig>>) will
instrument the CppUnitContext with a set of operations:

• void setUp()—CppUnit requires an initialization and a cleanup function for each
test case/test suite. These functions are provided by TestConductor as prototypes,
which can be used to add application or test specific code.

• void tearDown()--the test suite cleanup function.

• void cppunitmain(char* tc_name)—the main function for CppUnit testing. The
function consists of :

 a framework initialization part

 a test suite specific part – i.e. a CppUnitContext specific part

 a testoutputter definition part

 and a execution and result computation part – refered to as tail

Each of these parts can be customized using a tag of the <<CUnitConfig>>
configuration.

The customization tags of stereotype CppUnitConfig are:

• CppUnitContextExecutionKind-- Possible values:
‘RestartExecutable’,’NoRestart’. This tag defines whether the application is
restarted for each testcase, or all test cases are executed within a single invokation
of the application. Default is ‘RestartExecutable’.

• CppUnitContextExecutionKindReuseTestFixtureforNoRestart – Boolean
(default False) – using this tag, the user can specify whether the TestFixture shall
be reused for all test cases if CppUnitContextExecutionKind is 'NoRestart' or if a
new TestFixture will be created for each test case.

• CppUnitIncludePath—defines the path to the headers of the CppUnit framework.
For path definition, a symbolic variable $CPPUNITINSTALLDIR can be used.
This symbolic variable is textually substituted by the contents of tag
CppUnitInstallDir upon “Update TestCase”, “UpdateTestContext”, and “Update
TestPackage”, respectively. Default: “$CPPUNITINSTALLDIR/include”.

• CppUnitInstallDir—the full path to the installation directory of the CppUnit
framework. For definition of the path, envronment variables, e.g. “$
(CPPUNITHOME)” can be used . Default: “$(CPPUNITHOME)”.

• CppUnitLibPath—the full path to the CppUnit framework library file. Default:
“$CPPUNITINSTALLDIR/lib/CppUnit.lib”.

• CppUnitMainInit— the initialization part of the cppunitmain() function that will
be generated by “Update TestCase”, “Update TestContext”, and “Update
TestPackage”, respectively. For the default, please consult the TestingProfile.

• CppUnitMainOutputter— — test outputter specific initializations.
Default: “$RTCAUTOGENERATE”. If CUnitMainOutputter contains exactly this
string, TestConductor will automatically generate the respective code according to
the chosen output format.

117

• CppUnitMainTail— defines the execution and result computation part of
‘cppunitmain()’. For the default, please consult the TestingProfile.

• CppUnitReportKind—possible values: ‘xml’, ‘html’, ‘text’,’compilertext’. This
tag defines the result report format. Default: ‘html’

• InvokeExecutable—the content of this tag will be written to property
CPP_CG.Configuration.<activeEnvironment> and defines how the application will
be invoked.
Default: “$executable $TestCase”, where “$TestCase” will be textually substituted
by the “Update ...” functionality with the name of the selected test case or “all”, if a
test context is going to be executed.

• PostFrameworkThreadSegment— the contents of this tag will be written to
property CG.Configuration.PostFrameworkThreadSegment. Using this tag it can
be customized how ‘cunitmain()’ will b invoked.
Default: “p_$TestContext->cppunitmain(argv[1]);”, where the term “$TestContext”
will be textually substituted by TestConductor upon “Update ...”.

• ReportFilename— the filename prefix of the report generated by CppUnit.
Default: “$CONFIGDIR/report”, where “$CONFIGDIR” is a symbolic variable
denoting the code generation configuration refered to by the test context.
“$CONFIGDIR” will be textually replaced by the “Update ...” functionality.

• ResultFilename— the filename for the overall ‘pass/fail’ result. A CppUnit test
case execution passes, iff all executed assertions pass; a CppUnitContext execution
passes, iff all test cases pass; a TestPackage passes, iff all CppUnitContexts pass.
Default : “$CONFIGDIR/result.txt”

• XSLTFile--- full path to the xslt file using which a html report can be generated
from a CppUnit xml report.
Default : “$CPPUNITINSTALLDIR/contrib/xml-xsl/report.xsl”

Test Definition for CUnit/CppUnit
Code and flow chart test cases can be used very similar to their normal usage. Instead of
the RTC_ASSERT macros, for CUnit and CppUnit, CU_ASSERT macros and
CPPUNIT_ASSERT macros, respectively, are used.

For CUnit also statechart test cases can be used similarly to their normal usage with
TestConductor, except for using CU_ASSERT macros instead of RTC_ASSERT macros.

For CppUnit, usage of statechart test cases requires some manual adaptions of the test
context and the statechart defining the test. The necessary adaptions are explained below.
We recommend using code and flow chart test cases also for testing reactive behavior (cf.
Testing reactive behavior with Code Test Cases, Testing reactive behavior with Flow Chart
Test Cases on page 50 pp.).

Both, CUnit integration as well as CppUnit integration do currently not support SD test
cases.

Using Statechart Test Cases with CppUnit
In the CppUnit framework assertions like CPPUNIT_ASSERT are realized by throwing an
exception, when an assertion fails. This exception is caught by the framework and the
failed assertion is reported. The entire mechanism relies on the assumption that the test
case is executed in the same thread as the framework. CppUnit integration with
TestConductor utilizes a test context as test fixture, i.e. the CppUnit framework is
executed in the thread of the CppUnitContext. Statechart test cases are realized using a

118

separate test component owning the statechart, s.t. the statechart is exceuted in the thread
of the test component. Since these threads are in general not the same, it is necessary to
catch exceptions within the statechart and add failures to the testresult maintained by the
CppUnitContext.

Necessary modifications for statechart test cases with CppUnit:

1. Add public attributes

 CppUnit::TestSuite* suiteOfTests

 CppUnit::TestResult* theTestResult

to CppUnitContext

2. Overwrite tag CppUnitMainInit:

CPPUNIT_NS::TestResult testresult;
CPPUNIT_NS::TestResultCollector collectedresults;
testresult.addListener(&collectedresults);
std::ofstream outfile;

// Original: local variable
/* CppUnit::TestSuite *suiteOfTests = new
 CppUnit::TestSuite("$TestContext");*/

//NEW: use CppUnitContext attribute
this->suiteOfTests = new
 CppUnit::TestSuite("$TestContext");

CPPUNIT_NS::TestRunner *testrunner = new
CPPUNIT_NS::TestRunner();

//NEW: initialize attribute of CppUnitContext
theTestResult = &testresult;

3. add “cppunit/TestResult.h” to property CPP_CG.Class.ImpIncludes of test component
refered to by <<StatechartTestCase>> dependency of statechart test case

4. Instead of simply using e.g.

CPPUNIT_ASSERT(
 itsTCon->getItsCalculator()->get_result_op()==42),

in a transition action, you now should write:

CPPUNIT_NS::Test* current_tcase = 0;
CppUnitVector<CPPUNIT_NS::Test*>& alltests =
 (CppUnitVector<CPPUNIT_NS::Test*>&)
 (itsTCon->suiteOfTests->getTests());
CppUnitVector<CPPUNIT_NS::Test*>::iterator it =
alltests.begin();
while (it != alltests.end()) {
 if((*it)->getName()=="SC_tc_0") {
 current_tcase = *it;
 }

119

 ++it;
}
try {
 CPPUNIT_ASSERT(
 itsTCon->getItsCalculator()->get_result_op()==42);
}
catch (CPPUNIT_NS::Exception e) {
 itsTCon->getTheTestResult()->addFailure(
 current_tcase,
 new CPPUNIT_NS::Exception(e));
}

Command Line Execution
TestConductor can update, build, and execute TestCases, TestContexts or TestPackages
from the command line. Command line execution can either be performed by using the
command line feature of rhapsody.exe or by using rhapsodycl.exe (only on Windows,
TestConductor does not support rhapsodycl.exe on Linux).

Command Line Syntax for rhapsody.exe
You can use following syntax to execute tests from the command line:

 “<Rhapsody executable>” -cmd=open <model file>
-cmd=call "rtc TC_COMMAND TC_ELEMENT" -cmd=save –
cmd=exit

where TC_COMMAND is one of the following TestConductor commands

 update_build_execute

 performs an update, then a build, and then an execute on the
specified test element.

 update_build

 performs a build, and then an execute on the specified test
element.

 update

 performs an update on the specified test element.

 checkUpdateRequired

 queries if an update of TC_ELEMENT is required. If an update is
required, the result TRUE is written to the log file cl.log (see
below), otherwise FALSE.

 build_execute

 performs a build and then an execute on the specified test element

 build

 performs a build on the specified test element.

 execute

 performs an execute on the specified test element.

 clean_update_build_execute

120

 performs a clean, then an update, then a build, and then an execute
on the specified test element.

 clean_update_build

 performs a clean, then an update and then a build on the specified
test element.

 clean_update

 performs a clean and then an update on the specified test element.

 clean

 performs a clean on the specified test element.

and TC_ELEMENT is either “all” or the full path name of a test case, a test context
or a test package.

TestConductor logs in the file “cl.log” in the project folder the command line
actions together with the result10 (SUCCEDED, FAILED or ERROR11 for actions,
TRUE, FALSE or ERROR for queries).

Note: -cmd=save needs to be defined in order to permanently actualize the link to the
HTML test result report (controlled file) and the Verdict tag under it. At this time
older test result files will not be overwritten, but a new file with an incremented
number will be created. In case the model will not be saved before exiting, still the
old or none result file will be referenced.

Note: When using rhapsody.exe also the -hiddenUI option can be used to run Rhapsody
and TestConductor with a hidden user interface. This is supported for Windows
and Linux.

Examples:

• “<full Rhapsody path>\rhapsody.exe” -cmd=open <path to
Rhapsody
samples>\CppSamples\TestConductor\CppTestActions\CppTes
tActions.rpy –cmd=call “rtc update_build_execute
TPkg_Calc::TCon_Calc_Architecture::TCon_Calc::SD_tc_0”
-cmd=save
updates, builds, and then executes the TestCase “SD_tc_0” of the sample model
CppTestActions. After test execution the model is saved, Rhapsody is not
terminated.

• “<full Rhapsody path>\rhapsody.exe” -cmd=open <path to
Rhapsody
samples>\CppSamples\TestConductor\CppTestActions\CppTes
tActions.rpy –cmd=call “execute
TPkg_Calc::TCon_Calc_Architecture::TCon_Calc” -cmd=save
executes the TestContext ”TCon_Calc” of the sample model CppTestActions.
After test execution the model is saved, Rhapsody is not terminated.

• “<full Rhapsody path>\rhapsody.exe” -cmd=open <path to
Rhapsody
samples>\CppSamples\TestConductor\CppTestActions\CppTes

10In the format <command> <parameter> : <result>.
11After the keyword ERROR a description about the problem will be given in parentheses.

121

tActions.rpy –cmd=call “rtc build_execute TPkg_Calc”
-cmd=save
builds and executes the TestPackage ”TPkg_Calc” of the sample model
CppTestActions. After test execution the model is saved, Rhapsody is not
terminated.

Command Line Syntax for rhapsodycl.exe
If you run the command line version of rhapsody, rhapsodycl.exe, you can execute the
same TestConductor commands as for rhapsody.exe. In rhapsodycl.exe, the TestConducror
commands are invoked by specifying

 -cmd=call “rtc TC_COMMAND TC_ELEMENT”

in the command line prompt of rhapsodycl.exe (or in a file containing the list of
commands for rhapsodycl.exe). TC_COMMAND can be one of the following
testconductor commands:

 update_build_execute

 performs an update, then a build, and then an execute on the
specified test element.

 update_build

 performs a build, and then an execute on the specified test
element.

 update

 performs an update on the specified test element.

 CheckUpdateRequired

 queries if an update of TC_ELEMENT is required. If an update is
required, the result TRUE is written to the log file cl.log (see
below), otherwise FALSE.

 build_execute

 performs a build and then an execute on the specified test element

 build

 performs a build on the specified test element.

 execute

 performs an execute on the specified test element.

 clean_update_build_execute

 performs a clean, then an update, then a build, and then an execute
on the specified test element.

 clean_update_build

 performs a clean, then an update and then a build on the specified
test element.

 clean_update

 performs a clean and then an update on the specified test element.

 clean

 performs a clean on the specified test element.

122

and TC_ELEMENT is either “all” or the full path name of a test case, a test context or
a test package.
TestConductor logs in the file “cl.log” in the project folder the command line actions
together with the result (SUCCEDED or FAILED for actions, TRUE or FALSE for
queries).

Examples (we assume that rhapsodycl.exe is already started and the model has been
opened):

 “> -cmd=call “rtc update_build_execute
TPkg_Calc::TCon_Calc_Architecture::TCon_Calc::SD_tc_0”
updates, builds, and then executes the TestCase “SD_tc_0 ” of the sample
model CppTestActions.

 “> –cmd=call “execute
TPkg_Calc::TCon_Calc_Architecture::TCon_Calc”
executes the TestContext ”TCon_Calc” of the sample model CppTestActions

Note: TestConductor does not support rhapsodycl.exe on Linux.

Test Execution Report
After test execution all test reports are written in the same manner as described under
“Test Case Execution”, ”Test Context Execution” and “Test Package Execution”.

Test Case Execution on Targets
In addition to executing test cases on the host environment, test cases can also be executed
on the target environment. The necessary steps are target environment specific and are
further described in the following documents:

• Testing_with_RTC_on_a_Linux_Target.pdf (Linux)

• Testing_with_RTC_on_a_VxWorks_Target.pdf (VxWorks)

• Testing with TestConductor on a small target.pdf (generic environment)

Driving Operations Calls

Driving Operation Calls
To be able to call operation calls from the environment in TestConductor, we have to set
the Enable Operation Calls option in the dialog Advanced Instrumentation Settings as
Public, Protected or All and recompile/rebuild the model.

123

This setting controls the property CG:Operation:AnimAllowInvocation. Following
are the details of the options that can be used:

• None (Default)—do not enable calls

• Public—enable calls if operation is public

• Protected—enable calls if operation is public or protected

• All—enable calls in all cases

124

Test Management
TestConductor is a fully integrated add-on solution for Rhapsody. All relevant test data
like the test architecture, test cases and their test scenarios, test configurations and test
results are stored in the model. Navigation to all the elements can be done via the usual
capabilities of the Rhapsody browser.

Managing Test Data
With this tight integration you have all the possibilities you already know from other
elements like classes, package and so on, e.g.:

• Copy, paste, delete

• Create units for test components, test context, SUT and test component instances

• Load / unload test packages, test components, test context, SUT and test
component instances

• Requirements management

• Configuration management

• Documentation

Linking Test Case to Requirements
Test cases can be linked to their requirements which are defined in the model. This can be
done by using test objectives (TestObjective) to link model elements to the related
requirements.

• Add a new test objective to the test case “tc_SimpleStart” and select the
requirement from the listed model elements.

125

The result is a new test objective REQ1 as an element of test case “tc_SimpleStart” which
is linked to its requirement REQ1.

126

TestConductor Dialog
The TestConductor main dialog provides some global TestConductor settings and help
functions by selecting Tools > TestConductor from the Rhapsody tools menu:

127

The dialog offers the possibility to set some global TestConductor settings and to open
TestConductor’s tutorial by selecting Help > Tutorial. The global settings that can be
changed in this dialog are explained in the next section TestConductor Settings.

TestConductor Settings
TestConductor provides a range of global and also test case specific settings. The settings
are in most cases stored as properties in the model.

128

129

Sequence Diagram Properties
TestConductor provides settings concerning the usage and interpretation of sequence
diagrams during test case execution. All following properties are the settings for the dialog
Define Test:

These settings have to be done via properties on SDInstance level. Open the Feature
dialog of a sequence diagram instance, select the Properties tab, switch in the dropdown
combo box View to All and navigate to the metaclass TestConductor::SDInstance

130

TestConductor::SDInstance::ExecutionIterations

The required number of run-time instances can be set to multiple iterations with a concrete
number.

Note: This property should not be set directly. Please use the Multiple Iterations setting
in the Define Test dialog.

TestConductor::SDInstance::ExecutionMode

Driver invokes automatic driving of model execution after the test has been activated.
TestConductor automatically injects events into the running Rhapsody model according to
the specified sequence diagram. Monitor invokes manual driving of model execution.
This means that, during test execution, you must inject input events manually using the
Rhapsody animation tool or the project GUI (when available). TestConductor monitors the
reception of these events and internal messages between system objects. Blackbox
considers only those messages that originate at the system border (to be driven by
TestConductor) or that go to the system border (to be monitored by TestConductor).

Note: This property should not be set directly. Please use the corresponding Execute
SDInstance as: setting in the Define Test dialog.

TestConductor::SDInstance::ExecutionOrder

Linear—specifies that TestConductor should monitor the sequence diagram under test
assuming that all events and messages are arranged in a strict sequence. The vertical
drawing order of messages in sequence diagrams is used to compute an absolute sequence
of events and messages (each message in the in sequence diagram has a unique
predecessor and successor). Partial—specifies that TestConductor should monitor only
the order of events located on the same line (instance line or message arrow).

Note: This property should not be set directly. Please use the corresponding SD
Interpretation (Order): setting in the Define Test dialog.

TestConductor::SDInstance::ParameterValues

For a parameterized Rhapsody sequence diagram, map its parameters to concrete values.

Note: This property shall not be set directly. Please use the button Parameter Mapping
in the Define Test dialog.

131

General Properties
TestConductor provides some general settings that change the general behavior of
TestConductor. These settings have to be done via properties on test package level. Open
the Feature dialog of a test package, select the Properties tab, switch in the dropdown
combo box View to All and navigate to the metaclass TestConductor::Settings

TestConductor::Settings::AcknowledgeApplyChanges

If this property is switched on, TestConductor requires an explicit acknowledge from the
user each time a SDInstance has been changed. If the property is switched off, changes of
SDInstances are acknowledged implicitly.

By default this property is switched on.

132

TestConductor::Settings::CreateTestArchitectureMode

This property controls the behavior of the TestConductor function “Create
TestArchitecture”. If this property is set to “Standard”, each time “Create
TestArchitecture” is performed TestConductor creates a component and a configuration
for the newly created TestArchitecture using the default property settings for components
and configurations. If the property is set to “Advanced”, each time “Create
TestArchitecture” is performed TestConductor opens a dialog which allows to specify
from which of the existing components/configurations the property values of the newly
created component/configuration shall be derived. Furthermore, if the property is set to
“Advanced” and TestConductor::Settings::TestingMode is “AssertionBased”,
TestConductor offers the user a possibility to define the kind of each TestComponent in
the TestArchitecture to be created.

By default this property has the value “Standard”.

TestConductor::Settings::CreateTestArchitectureTransparency

By default, TestArchitectures are created as 'BlackBox' architectures, i.e. the SUT is
only external communication of the SUT is observable for testing. Internal communication
such as self invocation of operations, communication among parts of the SUT is not
considered in sequence diagram test cases.
If CreateTestArchitectureTransparency is set to 'GreyBox', then a copy of the selected
SUT will be created in the TestArchitecture that can be instrumented for testing purposes.
Testing such a grey box <<TestSUT>> replacement instead of the original SUT model
element enables TestConductor to instrument also the SUT model elements with

133

assertions, s.t. self messages and communication among parts of the SUT can be
considered in test cases.

TestConductor::Settings::CreateTestArchitectureUsingGlobalObjects

Since Rhapsody 8.1.4, TestArchitecture creation can optionally use global objects instead
of parts for SUT classes and TestComponent instances. Fundamental support for global
instantiation outside the TestContext gives way for grey box testing of implicit objects and
stubbing of implicit objects and in particular also <<Singleton>> objects. Note, that
parts of class can't be associated with global objects – at least, such associations can't be
instantiated using links, since such links would cross class boundaries of the composite
parent class of the involved parts. On the other hand 'classical' TestArchitectures using part
instantiation, can't deal with implicit obejcts and singleton objects in test component roles.
Thus, it is recommended to use global object instantiation if implicit objects or singleton
objects are involved in the testing process.

TestConductor::Settings::MapSDToTestArchitectureMode

This property controls the behavior of the test case wizard when a test case is created for
an existing sequence diagram. If the value of this property is set to “Strict”, only those test
architectures are considered to be suitable for the new test case that contain at least on
SUT instance of one of the classes of the life lines of the original sequence diagram. If the
value of this property is set to “Weak”, also all test architectures are considered to be
suitable that does not contain a SUT instance of one of the classes of the life lines of the
original sequence diagram, but for which the same message exchange is possible as in the
original sequence diagram.

TestConductor::Settings::overwriteTestContextDiagram

This property controls the creation of TestContextDiagrams when performing an “Update
TestArchitecture” on a TestContext. If this property is set to “Never”, each time “Update
TestArchitecture” is performed a new TestContextDiagram is added to the existing
TestContextDiagrams, i.e., existing TestContextDiagrams are not overwritten. If this
property is set to “askUser”, each time “Update TestArchitecture” is performed
TestConductor asks if an existing TestContextDiagram shall be replaced with a new one. If
this property is set to “Always”, each time “Update TestArchitecture” is performed
TestConductor replaces an existing TestContextDiagram with a new one.

By default this property has the value “Never”.

TestConductor::Settings::ReportLocation

With this property12 TestConductor can be instructed to store test reports and results not in
the default location directly underneath the test element (TestPackage, TestContext,
TestCase) but at a location chosen by the user. The location has to be a (test-) package,
which will be created if not existing yet. For nested packages the qualified name has to be
specified using the delimiter '::' (e.g. “MyResults::Results_MR1”).

Affected by this property are Test Execution Results, Model Coverage Results,
Requirement Coverage Results and Code Coverage Results. Underneath the test element a
hyperlink will be created13 targeting the actual result. If the property expression can not be

12Property will be evaluated not only on project but also also on package level.
13Hyperlink will be created only for test elements which can be written.

134

parsed or the specified package could not be created, the results will be saved at the
default location underneath the test element.

Beside fixed package names TestConductor provides the following keywords which will
be substituted with the appropriate names of the execution context:14

$TESTPACKAGENAME: Will be substituted by the name of the TestPackage15 of the
executed element.

$TESTCONTEXTNAME: Will be substituted by the name of the TestContext of the
executed element. Will be ignored for Testpackage results.

$TESTCASENAME: Will be substituted by the name of the executed TestCase. Will be
ignored for TestPackage and TestContext results.

$CONFIGURATIONNAME: Will be substituted by the name of the testing configuration
which was active at test execution. Will be ignored for TestPackage results.

TestConductor::Settings::TestCaseExecutionOrder

This property controls the execution order of TestCases when executing a TestContext.
Possible values are “BrowserOrder” and “DeclarationOrder” , where “BrowserOrder”
defines that TestCases areb executed in the same order as they are displayed in the
browser. “DeclarationOrder” defines execution in a user defined order. The declaration
order can be specified by right-clicking “TestCases” and selecting “Edit TestCases Order”
form the context menu.

By default this property has the value “BrowserOrder”.

14Note that the keywords may only be used to specify a complete package name, keywords may not be modified
(e.g. correct: “Results::$TESTPACKAGENAME”, incorrect: “Results:$TESTPACKAGENAME_1”)
15The outer TestPackage in assertion based mode

135

“Edit TestCases Order” opens a dialog using which the order of TestCases can be defined:

TestConductor::Settings::TestingMode

By default, new test architectures created with Rhapsody 7.6 or higher are created with
testing mode set to assertion based testing, i.e., the property
“TestConductor.Settings.TestingMode” is set to “AssertionBased”. For details regarding
the testing modes supported by TestConductor see “Choosing between testing modes” on
page 99.

To create a new test architecture for animation based testing, open the TestConductor main
dialog by choosing “TestConductor” from the tools menu. In the upcoming dialog, select
the testing mode you want TestConductor to apply for a newly created test architecture.
This setting does not affect any existing test architecture.

136

Test Context Properties
Also some properties for test contexts can be set by the user. In order to change these
properties, open the Feature dialog of a test context, select the Properties tab, switch in
the dropdown combo box View to All and navigate to the metaclass
TestConductor::TestContext

TestConductor::TestContext::TestContextExecution_RestartExecutable

If this property is checked (true), for each test case during execution of the test context, the
executable of the test context is restarted. If the property is not checked (false), the test
cases are executed without restarting the executable after the previous test case has
finished its execution.

TestConductor::TestContext::TestContextExecution_PreTestCaseOperation

If this property contains a name of an operation of the test context, for each test case
during execution of the test context, before a test case is executed the operation specified

137

in this property is called automatically. In the operation specified in this property, one can
initialize or reset some variables that are needed in the subsequent test case execution.

TestConductor::TestContext::TestContextExecution_PostTestCaseOperation

If this property contains a name of an operation of the test context, for each test case
during execution of the test context, after a test case is executed the operation specified in
this property is called automatically. In the operation specified in this property, one can
reset some variables that are needed in the subsequent test case execution.

Test Case Properties
Also some properties for test cases can be set by the user. Some of these properties are set
directly by using the execution dialog, some properties you may set using the feature
dialog of a test case. Open the Feature dialog of a test case, select the Properties tab,
switch in the dropdown combo box View to All and navigate to the metaclass
TestConductor::TestCase

TestConductor::TestCase::AnimatedSUT

This property controls the assumptions of TestConductor concerning the animation of the
SUT classes. Depending on the fact that the SUT classes are animated or not,
TestConductor uses different execution algorithms to control the execution of test cases
that are needed in order to execute test cases properly. If this property is set to
“Automatic”, TestConductor tries to automatically deduce if the SUT contains animation
code or not, and chooses the right execution algorithm accordingly. If the property is set to
“true”, TestConductor assumes that the SUT classes contain animation code. If the

138

property is set to false, TestConductor assumes that there is no animation code for the SUT
classes.

Per default the property is set to “Automatic”.

TestConductor::TestCase::ATGTestCase

Normally TestConductor injects messages that are defined in a sequence diagram without
time delays directly one after the other. In case this property is enabled, TestConductor
waits with injection of messages until the system is idle.

This property is enabled automatically for test cases created and exported by ATG.

Per default the property is disabled.

TestConductor:TestCase:CallOperationsOnlyWhenCallstackEmpty

If this property is checked, TestConductor delays operation calls that refer to inputs of
TestConductor so that these operation calls are made only when the call stack of the focus
thread is empty.

If the property is cleared, all operation calls are made by TestConductor immediately even
if the call stack of the focus thread is not empty.

Per default the property is disabled.

TestConductor::TestCase::ComputeCoverage

In case this property is enabled, TestConductor automatically computes and reports the
model coverage achieved when executing the test cases.

Per default the property is disabled.

TestConductor::TestCase::CoverageKind

If TestConductor::TestCase::ComputeCoverage is enabled, CoverageKind
defines how the coverage will be measured:

TestConductor supports four different kinds of coverage measures:

• SUT flat: Only coverage of the toplevel class of the SUT is measured, i.e. states,
transitions, and operations of parts of the SUT are not considered. Coverage of
model elements of test components is also not measured.

• SUT hierachical : Coverage of the SUT is measured in a hierarchical manner, i.e.
also states, transitions, and operations of parts of the SUT are hierarchically
regarded for coverage measure. Coverage of model elements of test components is
again not measured.

• TestContext flat: Coverage is measured in terms of all states, transitions, and
operations defined at the first decomposition level of the test context, i.e. all

139

states, transitions, and operations of the direct parts of the test context are
considered.

• TestContext hierarchical : all states, transitions, and operations in the hierarchal
structure of the test context are considered in coverage measure.

 Per default the property is set to “SUT flat"..

TestConductor::TestCase::CreateSDForFailedSDInstance

In case this property is enabled, TestConductor automatically creates a failure sequence
diagram (Show as SD) and stores it in the model.

Per default the property is disabled.

TestConductor::TestCase::ExecuteTestWithTracer

In case this property enabled, the execution of this test case will be done with activated
tracer (trace #all all).

Per default the property is disabled.

TestConductor::TestCase::ExecutionAnimationStartedTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to
connect to Rhapsody. If the application does not connect to Rhapsody within the specified
time, the test case execution is aborted. The default value is 20 seconds.

TestConductor::TestCase::ExecutionAnimationStoppedTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to
terminate after receiving the terminate command from TestConductor. If the application
does not terminate within the specified time, TestConductor simply proceeds. The default
value is 20 seconds.

TestConductor::TestCase::ExecutionFirstIdleTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to
become idle after giving the first “Go Idle” command. If the application does not become
idle within the specified time, the test case execution is aborted. The default value is 20
seconds.

TestConductor::TestCase::ExecutionIdleTimeOut

In case a timeout is defined (> 0) and the application does not show any activity for the
defined timeout (in seconds) the execution of this test case is interrupted.

The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value in the testing profile is 600 seconds.

Setting this property to zero means that no timeout is enabled.

TestConductor::TestCase::MultipleConditionCheck

140

TestConductor can be configured to check the reached condition and following conditions
without system activity, until one condition mark evaluates to FALSE. To change the
default TestConductor behaviour change the property
TestConductor::TestCase::MultipleConditionCheck of the test case to TRUE.
For further information read the chapter Condition Marks at page 167.

Per default the property is FALSE.

TestConductor::TestCase::ResetAppBeforeStartTest

In case this property is enabled, TestConductor will reset the application to the initial state
of the model for each test case execution. Normally this property is set using the test
execution dialog for sequence diagram based test cases.

Per default the property is enabled.

Note: This property is available for sequence diagram test cases only. This property is
currently not interpreted for source code, flow chart and statechart test cases.

TestConductor::TestCase::TerminateAppOnQuitTest

This property controls the behavior of TestConductor after quitting a test. In case this
property is enabled, the application terminates after quitting the test. Otherwise only
TestConductor quits.

Per default the property is enabled.

Note: This property is available for sequence diagram test cases only. This property is
currently not interpreted for source code, flow chart and statechart test cases.

TestConductor::TestCase::Tolerances

This property is an internal property where TestConductor stores tolerance definitions
defined in the sequence diagram test definition dialog. User should not set this property
directly.

Note: This property should not be set directly. Please use the corresponding Tolerances
button in the Define Test dialog.

TestConductor::TestCase::UseOM_RETURN

In case this property is enabled, TestConductor checks return values by evaluating a
specific animation message that is generated by the application if the operation whose
return value should be checked uses the animation macro OM_RETURN. If this property
is disabled, TestConductor can only check return values for operation calls that originate
from TestComponents.

Per default the property is disabled.

TestConductor::TestCase::WriteTestExecutionLogFile

141

TestConductor generates a log file of the test case execution if this property is enabled.
TestConductor stores this log file (RTC_log.txt) into the folder C:\tmp. The folder
must exist and the user must have write access to this folder.

Per default the property is disabled.

Generating Test Reports with Rhapsody
ReporterPLUS

Rhapsody ReporterPLUS is a reporting engine. The user is able to customize the content
and style of a Rhapsody ReporterPLUS report by specifying a template. Rhapsody
TestConductor delivers the test report template (TestReport.tpl) and the test
requirement coverage report template (TestRequirementCoverage.tpl), which will
be installed in the folder “reporterplus\Template” in your Rhapsody installation.

Note: The report templates currently will not show pictures of subscenarios or linked
subscenarios of test cases. Only the top level diagrams of scenarios and flow
charts are currently displayed.

Executing the Test Report
To execute the test report template on the model containing test data:

• In case you want to create the report only for a selected test package and the
containing test packages, select in the Rhapsody browser a test package and choose
from the menu Tools > ReporterPLUS > Report on selected package…

142

• In case you want to create the report for all test packages in the model choose from
the menu Tools > ReporterPLUS > Report on all model elements…

• In the Rhapsody ReporterPLUS wizard Select Task specify the export file format
your report shall be displayed in and click Next>.

• In the Rhapsody ReporterPLUS wizard Select Template check the currently active
template. In case the template “TestReport.tpl” is not active click on “…”,
open it from the folder “reporterplus\Templates” in your Rhapsody
installation folder and click Next>.

143

• The Rhapsody ReporterPLUS wizard Confirmation gives an overview about the
selected options. Click the button <Back to change the options. Click Generate to
start the execution of the Rhapsody ReporterPLUS report generation.

• In the dialog Generate Document specify a path and a name for the document to
generate and click the button Generate.

144

• Rhapsody ReporterPLUS will show the progress during creating the document and
start the corresponding application to show the test report.

Using the HTML Test Report
The created HTML test report is divided into two sections, the table of Contents on the left
side and the content section on right side. Dependent of the selected item on the left side,
the corresponding section of the report will be shown on the right side.

Note: The HTML report will only be displayed correct in the internet browsers and
versions, which are shown at report startup.

Note: The table of contents will only be shown in a HTML report. To display the table
of contents Java must be installed. In case these requirements are not fulfilled,
please select another export file format like Microsoft Word.

145

The first page gives an overview about the loaded model and the contained text contexts.
This page is reachable from the highest entry of the table of contents.

Conceptual this report lists all test contexts of the specified test package(s) during
creation. For each test context you will find information about

• the system under test

• the test component instances

• the test context diagrams

• the test cases and their execution status

Each test context and the sub-items are reachable by clicking on the corresponding item in
the table of content. Click on the plus to extend the tree structure.

146

Using the Test Requirement Coverage Report

Execute the test requirement coverage template (TestRequirementCoverage.tpl) to
get a statement about the relation between a requirement and the corresponding test cases,
which cover a requirement in the model. The testing profile defines the stereotype
<<TestObjective>> which shall be used to setup a relation between a test case and a
requirement, which it covers. In general a test objective is a stereotyped dependency,
which can link on every element in the model.

147

This requirement coverage report focus especially on the dependency between a
requirement and a test case. The test requirement coverage report gives another view on
the model. At a glance the user is able to verify, that e.g. the requirement
“Requirement_CD_WhiteBox_001” is covered by the test cases CDWhiteBox_001a,
CDWhiteBox_001b, CDWhiteBox_001c and CDWhiteBox_001d, where
CDWhiteBox_001b is currently FAILED and in result the requirement
“Requirement_CD_WhiteBox_001” is not fulfilled.

In opposite to the view “All Requirements”, the report also shows a table with “All Test
Cases” of the model. The “All Test Cases” view is assistant to check, whether a test case
has a test objective.

Some items in HTML report e.g. requirements, test cases test results etc. are linked, so the
user can easily browse to more detailed information pages.

148

Customizing the Test Report
The test report template is customizable to fit specific users requirements. Follow the
Rhapsody ReporterPLUS documentation how to adapt it to your needs.

Generating Test Reports with Rational Publishing
Engine

Rational Publishing Engine (RPE) is a tool that can be used to automate the generation of
documents. The user is able to customize the content and style of a RPE report by
specifying a template. Rhapsody TestConductor currently delivers a test requirement
coverage report template (TestRequirementCoverage.dta), which will be installed in
the folder “Share\RPE\Templates\TestConductor” in your Rhapsody installation.

Creating the Test Report
• Choose from the menu Tools > Rational Publishing Engine > Generate report…

• Select the RPE template which should be used for report generation. The template
“TestRequirementCoverage.dta” must be selected to create a requirement
coverage report.

149

• Specify which types of output files should be created and where they should be
saved.

• Then RPE automatically creates the selected reports.

Test Requirement Coverage Report
A test requirement coverage report gives an overview about the requirements and test
cases specified in the model and how the requirements are covered by test cases.

The testing profile defines the stereotype <<TestObjective>> which shall be used to
setup a relation between a test case and a requirement.

All requirements specified in the model are listed and it is shown which requirement is
covered by which test case. Detailed information are also available for each requirement.

150

The test cases specified in the model are listed, too. Again detailed information are
available for each test case.

151

Creating Report Templates
How report templates can be created using Rational Publishing Engine Document Studio
is described in the RPE documentation. An XML schema file of the testing profile
(testingprofile.xsd)which can be used for template creation can be found in the
folder “Share\RRE\Schemas” of your Rhapsody installation.

152

Using the TestConductor API
Similar to Rhapsody, TestConductor provides an API that can be used to access
TestConductor functionality from

 VBA Scripts

 Programs using the Rhapsody COM API

 Programs using the Rhapsody Java API

In order to use the TestConductor API the Rhapsody API function
“IRPApplication::runHelper(String)” must be used. In order to apply this function
correctly, one has to provide as an argument a valid TestConductor command.
Additionally, before the “runHelper” function can be executed, an appropriate model
element (e.g. a TestCase) must be selected by using the Rhapsody API. A typical sequence
would look as follows (using VBA):

…

Set app = GetObject(, "rhapsody.Application")

Set proj = getProject()

Set testcase = proj.findElementsByFullName("TestPackageA.TestContextB.TestCaseC")

‘ highlight the selected element

testcase.highLightElement();

‘ now one can execute a TestConductor command

app.runHelper(“Execute TestCase Sync”)

…

The sample “CppSamples/TestConductor/TestConductorAPI” shows how to access the
TestConductor API from within VBA scripts and Java programs. Additionally, the sample
“CppSamples/TestConductor/CppTestAutomationSample” shows how to use the API in
order to automate your testing workflows..

Available TestConductor API Commands
The following TestConductor API commands are available and can be called by using the
“runHelper” Rhapsody API function:

Applicable to TestCase elements:

 “Edit TestCase SDInstances”

 “Update TestCase”

 “Build TestCase”

 “Execute TestCase”

o Performs asynchronous TestCase execution, i.e., the function returns
immediately and the execution of the TestCase is performed in a
separate thread. The API script has to ensure itself (e.g. by waiting a

153

specified amount of time) that the TestCase execution has finished
before additional TestConductor API commands can be executed.

 “Execute TestCase Sync”

o Performs synchronous TestCase execution, i.e., the function returns
only after the execution of the TestCase has finished. This ensures that
subsequent TestConductor API commands are only performed after
the TestCase execution has finished. This is the preferred way of
executing TestCases via the TestConductor API.

Applicable to TestContext elements

 “Create SD TestCase”

 “Create Flowchart TestCase”

 “Create Code TestCase”

 “Update TestContext”

 “Build TestContext”

 “Execute TestContext”

o Performs asynchronous TestContext execution, i.e., the function
returns immediately and the execution of the TestContext is
performed in a separate thread. The API script has to ensure itself
(e.g. by waiting a specified amount of time) that the TestContext
execution has finished before additional TestConductor API
commands can be executed.

 “Execute TestContext Sync”

o Performs synchronous TestContext execution, i.e., the function
returns only after the execution of the TestContext has finished. This
ensures that subsequent TestConductor API commands are only
performed after the TestContext execution has finished. This is the
preferred way of executing TestContexts via the TestConductor API.

 “Execute TestPackage”

 “Update TestArchitecture”

Applicable to TestPackage elements

 “Create TestContext”

 “Update TestPackage”

 “Clean TestPackage”

 “Build TestPackage”

 “Execute TestPackage”

o Performs asynchronous TestPackage execution, i.e., the function
returns immediately and the execution of the TestPackage is

154

performed in a separate thread. The API script has to ensure itself
(e.g. by waiting a specified amount of time) that the TestPackage
execution has finished before additional TestConductor API
commands can be executed.

 “Execute TestPackage Sync”

o Performs synchronous TestPackage execution, i.e., the function
returns only after the execution of the TestPackage has finished. This
ensures that subsequent TestConductor API commands are only
performed after the TestContext execution has finished. This is the
preferred way of executing TestPackages via the TestConductor API.

Applicable to Class elements

 “Create TestArchitecture”

Defining Callbacks for TestConductor functions
In addition to using the TestConductor API directly, one can also execute automated
scripts after certain TestConductor actions like e.g. creating test architectures. In order to
do this, one can use triggered helpers as provided by Rhapsody. For instance, to specify
that after test architecture creation a certain helper should be activated automatically, one
has to do the following steps:

 Define a helper with the Helper Trigger “After Add Element”. The helper can
be implemented e.g. using a VBA script or by an external program that uses
the Rhapsody API.

155

 Now, when doing “Create TestArchitecture”, after the test architecture has
been created the specified helper is invoked automatically.

Besides “Create TestArchitecture”, helpers with helper trigger “After Add Element” are
also invoked automatically for all other TestConductor functions that create new elements,
like e.g. “Create Code TestCase”.

156

Advanced Test Definition
Specifying Requirements with Sequence Diagrams

Sequence diagrams play a dominant role in the TestConductor test process. They are a key
means for the graphical specification of tests, and enable TestConductor to visualize
design flaws.

Graphical Feature Support
TestConductor supports the standard UML sequence diagram elements, as available in the
Rhapsody sequence diagram editor. However, some of these elements are not yet fully
supported.

TestConductor supports the following graphical features:

• Test component lines, which specify classes with driver operations or stub
operations

• Test context lines, which specify the boundary of the system under test including
their test components

• Environment lines, which specify the boundary of a system under test

• Actor instance lines for reactive actor classes (those containing state charts). These
classes represent external behaviour against the system under test.

• Object instance lines, which specify the communication behaviour inside the
system under test

• Horizontal and slanted message arcs between object instances (including actor
instances), which specify events, triggered operations, operation calls, and their
argument values. Unspecified messages (messages with realization unspecified)
and unrealized message (messages with Stereotype unrealized) are ignored.

• Messages to itself, which specify that the source and the target of events and
operation calls is the same object instance.

• Dataflow messages among object instances.

• Condition marks, which specify synchronization points in a sequence diagram

• Events originating at the environment axis, which specify that external events
trigger the system under test.

• Only assertion based testing mode: Interaction operators “opt”, “alt”, “loop”,
“break”, “consider”, “parallel”

Synchronous and Asynchronous Messages
Rhapsody supports the concepts of synchronous and asynchronous messages. Both of
these concepts can be used when you define and execute tests.

157

Note the following:

• Only event messages, which are asynchronous, can be interfered by another
message.

• Operation calls are synchronous and do not admit any interference.

TestConductor associates for every event message in a sequence diagram two actions—
sending and receiving. In opposite to event messages TestConductor associates only one
action to operation calls and dataflows. During a test execution with TestConductor, you
can drive a specified sequence diagram and monitor (in the execution dialog) the total
number of actions and those that passed successfully.

Linear and Partial Order
TestConductor can interpret a sequence diagram either in linear order or in partial order
mode. To understand why partial order interpretation of sequence diagrams is sometimes
necessary to specify monitors, consider the following example. Assume that the
companies CompanyA and CompanyB want to set up a conference call. You want to
monitor the situation that both parties are eventually connected to the conference call. The
following sequence diagram specifies that each party dials a conference CallNr().
Regardless of the order the parties dial and connect, the monitor must be fulfilled
whenever both parties have connected. In the sequence diagram every message CallNr()
specifies two ordered actions:

• Sending the CallNr() event by a party

• Consumption of the CallNr() event by the telephone corresponding to the
calling party

158

If you had only linearly ordered monitor sequence diagrams, you could not express the
required independency of the connection order. Note that there are six possible dialing-
and-connection orders for the parties:

(CompanyA_Dial - CompanyB_Dial - CompanyA_Connect -
CompanyB_Connect)

(CompanyA_Dial - CompanyB_Dial - CompanyB_Connect -
CompanyA_Connect)

(CompanyA_Dial - CompanyA_Connect - CompanyB_Dial -
CompanyB_Connect)

(CompanyB_Dial - CompanyA_Dial - CompanyB_Connect -
CompanyA_Connect)

(CompanyB_Dial - CompanyA_Dial - CompanyA_Connect -
CompanyB_Connect)

(CompanyB_Dial - CompanyB_Connect - CompanyA_Dial -
CompanyA_Connect)

Every sequence diagram interpreted in linear order could specify only one of these
possible connection orders (for example, the linear order of the connections shown in the
sequence diagram considered above is “CompanyA_Dial - CompanyB_Dial -
CompanyB_Connect - CompanyA_Connect”, because the evaluation order is from top
to bottom). Hence, with linear order you must define six different monitor sequence
diagrams. Note that five of these monitors would lead to a failure during testing; only one
would pass in every test execution. If you interpret this sequence diagram in partial order,
it represents all the possible (six) orders. This is due to the fact that you do not enforce any
order between pair wise independent sending and receiving of the CallNr() events.
Sending and receiving of an event on the CompanyB side is independent from the
CompanyA side.

Test execution with partial order might result in extreme compilation times. TestConductor
has a facility to interrupt the execution when it takes too long.

159

By pressing the “Abort” icon in the icon toolbar aborts the compilation and test case
execution.

Note: Partial order set together with the driver and monitor option implies that driving
the input events is independent from monitoring the internal messages. To avoid
the arising nondeterminism, TestConductor first drives inputs and then monitors
internal messages. TestConductor chooses one valid order of messages to be
driven (in particular, this order changes in general when the same sequence
diagram test case is executed repeatedly). Such nondeterminism does not exist
for linear order interpretation, because it is a precise order between all messages
in a sequence diagram. Also note that there is no nondeterminism for monitor
only, because you decide when you inject all inputs, and TestConductor monitors
internal messages as they appear in the running model.

Parameters
One of the most important aspects of reusing sequence diagrams is the possibility to
parameterize them. By using parameters such as “X” and “Y” as object names for
sequence diagram instances, all combinations of objects of the corresponding classes can
be treated within one sequence diagram. You must instantiate these parameters with
different concrete objects of the system.

Parameters are used to specify sequence diagrams, which can be used as test patterns or as
generic sequence diagrams in test definitions. Parameterized sequence diagrams can be
used more than once in the same test configuration, or they can be used in various contexts
in different test configurations. Parameters can be applied for instance names and for
argument lists of events and operations. Instance names in a Rhapsody sequence diagram
must be either concrete names or parameters. For example, if an instance line is labelled
“X1:Telephone”, X1 is a parameterized object instance name of class Telephone that
will be mapped to a concrete object instance name when the sequence diagram is
instantiated as part of a test definition. In other words, X1 can be mapped to PBX[0]-
>itsTelephone[0]. Parameters are useful when you are defining multiple tests with a
similar structure, such as the PBX sample where Telephone 1 can connect to
Telephones 2, 3, and 4. Using parameters, you can specify sets of similar tests by

160

specifying one common sequence diagram for these cases. To manually generate multiple
test cases, simply bind the sequence diagram parameters to various concrete values.

In the following example, the sequence diagram contains the parameters caller,
receiversLine, receiver, nr1, and nr2. The first three parameters represent
parameterized instance names, whereas the last two describe attribute values for
parameterized events. Due to the concept of parameters, this sequence diagram can be
used as a test pattern to specify and execute caller-receiver tests for the pairs of
telephones. This is done by instantiating the sequence diagram several times.

Defining Parameters
TestConductor supports test definitions based on sequence diagrams, whose instances
either have a concrete or parameterized name. Parameterized name means that it is not a
valid, or concrete, object name as usually used in Rhapsody. You can also use an
anonymous class name that is without a concrete name or parameter. In this case, in
accordance with Rhapsody, the class name is internally expanded to the unique concrete
object instance. During test execution, sequence diagrams are animated in relation to the
default names. Note that parameters have no default values. You can specify parameters
for a sequence diagram by declaring them in the Tag RTC_SDParameter which is
available for each test scenario sequence diagram.

To declare parameters for a sequence diagram do the following:

1. Open a Rhapsody sequence diagram in a Rhapsody project.
2. In the names pane, specify the objects names of the classes Telephone and Line.

Give a parameterized name, such as caller:Telephone. Give the concrete names
for another instance depicted in the sequence diagram like PBX[0]-
>itsTelephone[0]: Telephone. You can leave an instance “anonymous” like
Line. Rhapsody considers such a specification as a concrete class instance with the
default name PBX[0]-> itsLine[0]:Line.

161

3. In the Rhapsody browser, click on the cross beside of the name of the test scenario
sequence diagram to open the tag view.

4. Open the Feature dialog of the corresponding RTC_SDParamters tag
5. Click into the Value field and type the name of the parameter.

Note: Make sure that you type the identical names of parameters as specified in the
current sequence diagram. TestConductor cannot determine misspelling.

Note: TestConductor adds properties to the sequence diagrams when models are opened,
in case these properties were not added before. This is why existing models with
sequence diagrams are marked as changed (red icon) along with the sequence
diagrams when projects are loaded for the first time after TestConductor was
installed.

If a sequence diagram contains two or more parameters, separate their names using
commas, then click OK. The following figure shows how to specify multiple parameters.

162

You can apply parameters to message argument lists to specify more flexible, generic
sequence diagrams as templates in test definitions. Parameterized arguments of messages
are used, for example, when input stimuli correspond to parameterized object names in the
same sequence diagram or in the same test configuration.

To extend the parameter list of a sequence diagram with parameterized arguments, do the
following:

1. Open the sequence diagram in the Rhapsody sequence diagram editor and specify
event or operation arguments as parameters inserting their parameterized names in the
object pane. As an example, in the following figure, values of the Digit argument of
the evDigitDialed event are specified as parameters nr1 and nr2

2. Using the Rhapsody browser, open the Feature dialog of the corresponding
RTC_SDParamters tag and extend the list of the parameters typing “nr1,nr2” in
addition to the existing parameters in the Value field.

3. Click OK to accept the change of the parameter list.

The specification defined with the generic “Ringing_Another_Party” sequence diagram,
says that whenever a calling telephone is taken off the hook and dials an extension, the
receiving telephone rings. Note that the sequence diagram does not specify which
telephone is calling, which one is the receiver, nor the extension dialed.

Parameter Mapping
You can consider Rhapsody sequence diagrams with parameters as “classes of sequence
diagrams”, whereas sequence diagrams with parameters mapped to real objects represent
“instances of sequence diagram classes.” One parameterized sequence diagram can be
used in various contexts: in different test configurations, or in the same test configuration
with different parameter mappings. It catches several requirements similar in structure
(order of messages) and different only in the names of the involved instances.

As an example, the “Ringing_Another_Party” sequence diagram can specify that
Telephone 1 calls Telephone 4. To do this, map its parameters to the following
object names in the PBX model:

caller: PBX[0]->itsTelephone[0]
receiversLine: PBX[0]->itsLine[3]
receiver: PBX[0]->itsTelephone[3]
nr1: 1
nr2: 4

The following table lists the extension for each telephone.

163

Telephone Extension

Telephone 1 11

Telephone 2 12

Telephone 3 13

Telephone 4 14

In this example, mapping parameter nr2 to 3 instead of 4 leads to the “concrete”
specification corresponding to “Whenever Telephone 1 dials the extension of Telephone 3,
Telephone 4 rings”. TestConductor will show that this specification cannot be met by the
real behaviour of the model.

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

Using Time Interval for Delay Driving from Environment and
TestComponents

TestConductor provides capabilities to automatically drive messages (events, operations or
triggered operations) with a certain delay. Users can specify that TestConductor should
drive external messages or messages from a TestComponent to the SUT with a certain
time delay. Whenever a message must be driven, users can specify that TestConductor
waits for a certain amount of time (ms, sec, min) in order to delay actual message
generation. This is expressed on the sending instance line (either the system border or a
TestComponent) with the time interval notation of the sequence diagram editor.

Note: TestConductor will regard only time intervals between messages, if driving
messages are defined from the ENV line and the time interval definition is also
specified on the ENV line or if driving messages are defined from a
TestComponent instance line and the time interval definition is specified on the
same TestComponent instance line.
Any Time Interval on a SUT instance line will be ignored.

Time delays will be specified with the time interval notation in sequence diagrams.
TestConductor supports time intervals if they are associated with system border or
TestComponent instance lines. The label of a time interval specifies the time unit (ms,
sec, min) and a time value. Essentially, there are two slightly different Time Interval
annotations with a slightly different execution semantics. The first variant uses the
following syntax:

Syntax: > 5 sec

Here, TestConductor must wait at least 5 seconds before it may drive the next message.
Other time interval formats are “> 500 ms” and “> 5 min”. TestConductor creates a
timer in the tested application which elapes after the amount of time specified in the Time
Interval.

164

The start point of a time interval is always associated with the next message point above
the time interval (on any instance line). The end point of a time interval is always
associated with the next message point below the time interval (again on any instance
line).

After driving evOffHook() and observing evOriginateCall() TestConductor must
wait 5 seconds before it may drive evDigitDialed(Digit=1).

TestConductor must monitor all system reactions before evDigitDialed(Digit=1),
including evDialTone().

The second variant of Time Intervals are those which uses the following syntax for time
annotations:

Syntax: >> 5 sec

When using this syntax, in contrast to the “> 5 sec” case TestConductor does not create an
own application timer when starting the time interval. Instead TestConductor will use the
time of the tested application. As a result, TestConductor will only proceed if the tested
application time increases at least the specified amount of time. In contrast to the “> 5 sec”
syntax TestConductor may proceed later than the specified amount of time, since the
tested application time might increase to a larger amount of time than the specified time
interval.

TestConductor also allows that time intervals overlap if several messages to be driven are
constrained via time intervals. This means, TestConductor will manage several timers for
the driven messages at the same time, no matter if they are specified on the same instance
line or on different instance lines. For every time interval there always exists a unique
predecessor and successor message to be driven in the sequence diagram.

Activation Conditions
Activation conditions are used to specify the point in time during model execution when
sequence diagram instances become activated. You can use activation conditions to model
a predecessor order between several sequence diagram instances in a test definition.
Activation conditions can specify a starting point of sequence diagram instance
simulation, such as event sending or event receiving, which in turn can be a result of the
behavior defined by another sequence diagram. TestConductor supports conditional
expressions for events and conditions in the following form:

ObjectName->CondName(Parameters)

165

In this syntax:

• ObjectName is a parameterized or concrete name of a class instance or an ENV
(environment variable), which can be represented by the system border.

• CondName is a particular kind of event, state, or method action.

• Parameters is a state of a state chart, or the name of an event or method, and
the receiver of this event or method, depending on the CondName.

The exact syntax is described under Syntax for Activation Conditions / Condition Marks
(see page 255) in the appendix.

Note: Rhapsody does not perform any static syntax checks on these conditions.

You can associate exactly one activation condition with every sequence diagram. The
trivial activation conditions are TRUE and FALSE. Every sequence diagram instance used
in a test inherits the activation condition specified in the property dialog of the sequence
diagram.

Defining an Activation Condition
Activation conditions are stored as additional tag RTC_ActivationCondition in the
corresponding test scenario sequence diagram. Activation conditions can be defined with
respect to the condition language definition, as follows:

1. In the Rhapsody browser, click on the cross beside of the name of the test scenario
sequence diagram to open the tag view.

2. Open the Feature dialog of the corresponding RTC_ActivationCondition tag
3. Click into the Value field and type the condition. You can specify one activation

condition.

166

5. Click OK.
Note: To make activation conditions visible in the sequence diagram, you can draw

notes with their descriptions.

Condition Marks
TestConductor enables you to specify conditions for condition marks on instance lines
with the same syntax as activation conditions. Condition marks in sequence diagrams can
play the following two roles:

• Synchronize several sequence diagram instances executed concurrently.

• Specify a stubbing behaviour which can appear during execution.

As an example, you can add the following condition mark for the instance of the class
Line in the “Ringing_Another_Party" sequence diagram:

receiversLine->IsIn(ROOT.InService)

Testing the requirements specified by this sequence diagram, TestConductor will drive the
first three events. After that, it will proceed only if the condition of the condition mark has
the value TRUE. Otherwise, some other activities in the system must be performed to
change the value of the condition. You can specify these activities using other sequence

167

diagrams driven by TestConductor. They can also be driven manually, if it has not been yet
implemented as a part of the system. Changing the value of the specified condition to
TRUE will trigger TestConductor to continue monitoring and driving this sequence
diagram.

In case there are two or more condition marks defined in a row, TestConductor will check
the first only. TestConductor will evaluate each of the following condition marks with a
new system activity, if the previous condition mark was TRUE. This is the default
TestConductor behaviour.

TestConductor can be configured to check the reached condition and following conditions
without system activity, till one condition mark evaluates to FALSE. To change the default
TestConductor behaviour change the property
TestConductor::TestCase::MultipleConditionCheck of the test case from
FALSE to TRUE.

Note: TestConductor will ignore condition marks during test execution when the syntax
of the condition mark is not valid.

Preconditions (for SysML/Harmony)
For SysML/HARMONY models, i.e for SysML models that contain the HARMONY
profile, TestConductor provides a special kind of condition, so-called preconditions. With
preconditions, in SysML/HARMONY models one can set attributes of SUTs to specifed
values. This is useful whenever the behavior of the SUT depends on values of local
attributes. In order to define a precondition in a test scenario, add a condition on the life
line of the SUT instance that contains the attribute, write “<precond>” into the first line
of the condition's text, and specify the value the attribute should have in the next line:

168

In the example depicted above, a precondition is specified that defines value “12” for the
attribute “i1” and value “Peter” for attribute “s1” of block A. When executing the test
case, and TestConductor reaches the precondition, it sets the specified values for the
attributes. When the test case continues, now the behavior of the SUT reflects the new
values for the attributes. Currently, the usage of preconditions is restricted to
SysML/HARMONY models. If multiple attributes should be set by a precondition, the
attribute value specification must be separated by newlines in the condition mark.

Use Cases of Activation Conditions
This section describes some examples that use activation conditions. The main three
purposes of activation conditions are as follows:

• To specify the starting point of sequence diagram simulation.

• To specify that one sequence diagram can be activated only when another sequence
diagram has already been activated or fully traversed (during simulation).

Specifying the Starting Point of Simulation
Activation conditions specify a point in time when the corresponding sequence diagrams
must be activated. Consider the parameterized “Answering_Call” sequence diagram
shown in the following figure:

169

This sequence diagram can be used to test, whether any telephone can properly answer a
call. This property will be checked starting in the system state specified in its activation
condition:

• When the object defined as receiversLine has sent the event evRing() to
the corresponding Telephone receiver.

• When the object defined as receiver stays in its basic state Idle.

Specifying Ordered Predecessors
Through activation conditions, you can define a predecessing order between instances of
different sequence diagrams checked during the same test execution.

Example 1: Exact Predecessing

Consider two sequence diagrams that will be stimulated one after another:

• “Ringing_Another_Party” (shown on page 161)

• “Receive_X”, shown in the following figure:

170

Note that the exact order can be set only between “concrete” sequence diagram instances,
rather than parameterized sequence diagrams. Consider the following parameter mapping
for the “Receive_X” sequence diagram:

receiver: PBX[0]->itsTelephone[2]
receiversLine: PBX[0]->itsLine[2]

The activation condition of this sequence diagram specifies the starting point when Line
3 has sent the evRing event to its Telephone 3. This condition can become TRUE
when the corresponding instance of the “Ringing_Another_Party” sequence diagram (with
the similar parameter mapping) has been fully traversed.

Although the sequence diagrams “Ringing_Another_Party” and “Receive_X” have similar
parameter names—receiver and receiversLine—they can be mapped to different
values. In such a case, two sequence diagram instances will be unordered. Therefore,
parameter names in sequence diagrams can be considered as local variables with values in
the scope of the corresponding sequence diagrams.

Example 2: Interleaving the Execution of Two Sequence Diagrams

The following two sequence diagrams are activated during a test execution one after
another:

The “X_calls_Y” sequence diagram, shown in the following figure:

171

This can be used to test whether any telephone can start and finish a communication.
Moreover, this property will be checked only starting from the specified state of the
system—when the object defined as callersLine has not received the event evRing
from the corresponding telephone caller.

An instance of the “Receive_X” sequence diagram, described on before can be activated
after the corresponding instance of the “X_calls_Y” sequence diagram has been partially
traversed. To obtain this order between sequence diagram instances, the mapping for the
parameters receiversDigit1 and receiversDigit2 from the “X_calls_Y”
sequence diagram must correspond to the extension number of the Line name mapped to
the parameter receiversLine from the “Receive_X” sequence diagram.

Note that the predecessing order is defined implicitly. During test execution, containing
instances of these two sequence diagrams, Test Conductor first activates an instance of
“X_calls_Y”, drive the events evOffHook, evDigitDialed, and monitor the event
evDialTone. After driving the event evDigitDialed(Digit= receiversDigit2),
TestConductor activates the corresponding instance of the “Receive_X” sequence
diagram. It monitors the event evRelease only after the instance of the “Receive_X”
sequence diagram has been fully traversed. The exact order of the sequence diagram
instance execution is derived from the system behaviour, but is also bounded by the
activation condition.

Specifying Return Values and Output Values
Users can specify expected return values and output values for operation calls. To specify
a return value for an operation, open features dialog of an operation in a sequence
diagram. Specify the expected return value in the Return Value field.

172

Consider operation 4 =op_int(a = [3..4], b = 2, c = In:9;Out:3) in the
following sequence diagram. It returns integer values. Assume we specify integer value 4
as the return value.

TestConductor will monitor the actual values as specified in the dialog when an operation
call returns and will check if the actual return value conforms to the specified value or not.

Note: Using Macro OM_RETURN(): TestConductor is using Rhapsody’s animation
capabilities to perform test execution. If an operation returns a value then this
value is by default not animated in Rhapsody. In order to get animation
information about returning operations it is mandatory to use a special Rhapsody
macro OM_RETURN() instead of statement return() for the purpose of test
execution. The macro is pre-defined in “\Share\LangCpp\aom\aommacro.h”.
In the above example suppose that operation body of op_int(int a, int b,
int c) simply contains one statement „return 4;“. This must be replaced by
OM_RETURN(4); to be able to check such return values with TestConductor.
Since this special macro is only needed for testing purposed it is already
embedded into #ifdef-statements. The #ifdef statement guarantees that the

173

macro is only used for testing purposes, while the standard return-statement is
used when generating non-animated code.

Note: Using Macro OM_RETURN_VOID: If an operation returns with a void value, then
TestConductor can check that the return indeed happens when using
OM_RETURN_VOID.

Note: Using Macro OMREPLY(): Triggered operations returning values is realized
using reply().TestConductor can check that the return indeed happens when using
OMREPLY().

Note: output parameters of type uchar and long double are not supported.

Note: range specification for return values (e.g. "[1..4]") are not supported.

If an actual return value does not conform to a specified value, then a red message is
drawn. The message is labelled with

"<Specified operation and its parameter> Operation Call returned -
Return value does not match. Expected values are: <Expected
operation and its parameter list>”.

For example:

“4=op_int(a=1,b=2,c=3) Operation Call returned - Return value does
not match. Expected values are: 5=op_int(a=1,b=2,c=3)”.

Note: If we have pointer types or structures as output and in/out parameter types then
serialization functions must be added to the macro in order to be able to test the
value with TestConductor.

Note: If we have pointer types or structures as return types then serialization functions
must be added to the return macro in order to be able to test the value with
TestConductor

Specification of the Output and in/out Values
Suppose we consider an operation m(int p1, int p2, int p3, int p4), where p1
and p2 are input parameters and p3 is an output parameter, and p4 is an in/out parameter.
In a sequence diagram users can specify the expected input parameter values and the
expected output and in/out parameter values. Output and in/out Test Execution parameters
are realized with call-by-reference. For instance, a sequence diagram message "m(p1= 3,
p2 = 5, p3 = 7, p4 = 9)" specifies that operation m() is called in the model with
input values p1=3 and p2=5, and with references to p3 and p4, i.e. m(3,5,&p3,&p4).
Note that &p4 is an in/out parameter and hence is used as an input in the operation m(),
too. Here, &p4 provides the value '9' for the call. The call returns with value p3=7 and
p4=?.

The in/out parameter is specified in a sequence diagram with both input and output
parameters. The format of specifying an in/out parameter is

<parameter> = In:<in_value>;Out:<out_value>

174

Message "m(p1 = 3, p2 = 5, p3 = 7, p4 =In:9;Out:12)" specifies that m() is
called with "Input p1=3”, "Input p2=5”, "in/out p4=9”. Message m() returns
with "Output p3=7, in/out p4=12”. Both values for in/out parameter p4, the input
part and the output part are specified.

Output value checking can not be done for operations which originate from the
environment line and are generated by TestConductor. Checking of output values is
supported for all operations that originate from TestComponents, and for all operations
that do not start at the environment line and whose called operation uses OM_RETURN to
return values to the caller.

Users can record animated sequence diagrams. The animated sequence diagrams trace the
parameter values when operations are called, but they do not show the values of output
and in/out parameters when operations return. Hence, animated sequence diagrams can not
be used to check values of output parameters and in/out parameters. Users have to modify
animated sequence diagrams in order to extend it with relevant output information which
is not provided by Rhapsody's sequence diagram animation.

Suppose we consider an operation m(int p1, int p2, int p3, int p4), where p1
and p2 are input parameters and p3 is an output parameter, and p4 is an in/out parameter.
An animated sequence diagram might show "m(p1 = 3, p2 = 5, p3 = *, p4 =
9)". In order to check output parameter p3 and the output value of p4 when m() returns
users must add the required information. Example: "m(p1 = 3, p2 = 5, p3 = 7, p4
= In:9;Out:12)".

Note: Out or in/out values are only taken into account by TestConductor if also a return
value is given in the message specification (value or “don’t care”-star). That must
also be done for operations that do not have a specified return type (void
operations). Hence, the In:..;Out:… specification should only be used if a return
value has been defined, too. Otherwise the test execution will fail.

Note: Out values for some specific out arguments are currently not usable if the
corresponding setting of the property CPP_CG::Type::Out specifies a pointer-type
instead of a reference-type.

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

Ignoring Unrealized Messages
Messages with stereotype unrealized are filtered out and ignored in the test execution.

175

Open the Features dialog of the message then specify Stereotype as Unrealized. When
you are executing the test, we get a user warning that the message is ignored in the test
execution.

Reference Sequence Diagram
Interaction occurrences and their corresponding reference sequence diagrams are specified
within Rhapsody. Defining tests with TestConductor is not affected by interaction
occurrences, since interaction occurrences are features inside sequence diagrams, while
tests are defined on the basis of sequence diagrams listed in the Rhapsody browser. If
sequence diagrams used in a TestConductor test contain interaction occurrences, then this
is not relevant for the test definition but it clearly has impact on the test execution.

TestConductor will substitute interaction occurrences with the scenarios specified in the
corresponding reference sequence diagrams for test execution. For TestConductor, it is
logically the same if users specify a scenario within one sequence diagram or if the
scenario is specified with interaction occurrences and reference sequence diagrams.
Whenever an interaction occurrence is reached, then the scenario as specified in the
reference sequence diagram is tested. Test control starts with the main sequence diagram,
and when a reference sequence diagram is reached, the control goes into a reference
sequence diagram, and as the execution of the reference sequence diagram is completed,
the control returns back into the main sequence diagram.

Consider the following main sequence diagram, “SD_A”, which has a reference to the
sequence diagram, “SD_B”.

176

This interaction occurrence refers to a sequence diagram with name “SD_B”, as seen
below.

In the sample sequence diagrams above testing sequence diagram “SD_A” with reference
sequence diagram “SD_B” leads to the same result as if the interaction occurrence would
have been replaced with the scenario in “SD_B”.

The scenario which is going to be tested is:

– EvOffHook (SD_A)
– EvOriginateCall (SD_B)
– OpenConnection (SD_B)
– OpenConnection (SD_B)
– EvOriginateCall (SD_B)

177

– EvDialTone (SD_B)
– EvRing (SD_A)
– EvDigitDialed (SD_A)
– EvDigitDialed (SD_A)
– EvDigitDialed (SD_A)
...

Note: Interaction occurrences are drawn on lifelines. Those lifelines have to be
contained in the reference sequence diagram.

TestConductor does not care if:

• reference sequence diagram does not contain the same life lines as surrounded by
the interaction occurrence

• reference sequence diagram contains fewer life lines

• reference sequence diagram contains more life lines

• reference sequence diagram contains other life lines

TestConductor just considers the provided life lines and the specified messages as relevant
test scenario and expects exactly those messages when the SUT is executed. For instance,
if the above shown sequence diagram “SD_B” does not contain the life line to the right
hand side, then message evOriginateCall going to this life line is not part of the test.

Show As SD draws one new sequence diagram with all the messages which have been
monitored (green colour) or which are supposed to be monitored (blue colour), and also
failed messages (red colour). If a test contains a sequence diagram with one or more
interaction occurrences, then TestConductor draws still only one new sequence diagram
which shows all the relevant messages of the main sequence diagram and also the
messages from the entire referenced sequence diagram.

I case a TestConductor test is executed in linear order a situation which must be taken care
of is, when there is an additional message on the same level as of the reference sequence
diagram. Consider sequence diagram “SD_A” with the interaction occurrence. To the right
hand side of the interaction occurrence there is an additional message evRing, which is
independent from the interaction occurrence. In partial order execution this will be
considered as parallel. In linear order execution, TestConductor must determine a total
order on all messages. In sequence diagrams without interaction occurrences, this order is
determined graphically from top to bottom in a sequence diagram. In the case above, the
graphical order between messages in “SD_B” and between evRing is not specified.
Hence, TestConductor can not establish a total order based on the graphical information.
In this situation, TestConductor follows the following rules:

1. TestConductor considers all messages from top to bottom in total order unless the
upper boundary (graphically) of an interaction occurrence is reached.

2. Then all messages in the reference sequence diagrams are considered in total order
3. Then the messages to the right hand and left hand side of an interaction occurrence are

considered in total order (if those messages do exist).
4. If reference sequence diagrams contain new interaction occurrences then the same

rules apply.

178

If several interaction occurrences appear in one sequence diagram then the same rules
apply, i.e. there is a total order on interaction occurrences which is derived from the
graphical order.

If an interaction occurrence is not yet realized by a reference sequence diagram, then this
interaction occurrence is ignored for actual test execution.

If reference sequence diagrams are used to specify lifeline decomposition, then this is also
ignored by TestConductor for test execution.

Life Line and Part Decomposition

Life Line Decomposition Support for Testing
Life line decomposition and their corresponding reference sequence diagrams are
specified in Rhapsody. For instance, consider sequence diagram “MainSD” (Figure 1)
which references “RefSD” (Figure 2).

The system border life line specifies the environment of the sequence diagram. Here, we
have four messages from the system border going to a logical object Tel0. Tel0 has not
been realized to a concrete class or object in the model. It is just a logical name for an
arbitrary telephone (<unspecified>). It is a decomposed life line. We set the
decomposed life line to “RefSD” as shown in the diagram. Messages evOffHook,
evDigitDialed and evOnHook() are sent to Tel0 (the messages are also
<unspecified>). The MappingPolicy property of its life line is set to
ObjectAndDerivedFromRefSD.

179

In the “RefSD”, we can see that the messages that come from the system border of this
“RefSD” do match with the messages in the “MainSD” (evOffHook(),
evDigitDialed(), evOnHook()). In the “MainSD”, these messages go from the
system border to the Tel0 life line. Tel0 is internally realized by the concrete objects
PBX[0]->itsTelephone[0], PBX[0]->itsLine[0] and PBX[0]-
>itsConnection[0] which also exchange some internal messages.

180

We consider only the “MainSD” while defining the test in TestConductor. For actual test
execution, TestConductor will execute the “MainSD” and check if the messages sent
to/from Tel0 in the “MainSD” are received/sent by any of the instances in the “RefSD”.
TestConductor knows only senders/receivers of the “RefSD”, i.e., TestConductor knows
only the instances in the “RefSD” but TestConductor does not know about the internal
messages between the instances in the “RefSD”. When message are sent to/from Tel0 in
the “MainSD”, Testconductor only checks if these messages are received/sent by the
instances present in the “RefSD”.

In the sample, testing “MainSD” with reference sequence diagram “RefSD” leads to the
following order of messages that will be checked by TestConductor

• System border sends evOffHook() to Tel0 in the MainSD

• evOffHook() is received by one of the instances in the RefSD

181

• System border sends evDigitDialed(Digit = 1) to Tel0 in the MainSD

• evDigitDialed(Digit = 1) is received by one of the instances in the
RefSD

• System border sends evDigitDialed(Digit = 2) to Tel0 in the MainSD

• evDigitDialed(Digit = 2) is received by one of the instances in the
RefSD

• evRing() is sent by one of the instances in the RefSD

• evRing() is received by PBX[0]->itsLine[1] in MainSD

• Messages evRing() and evAlerting() occur in the MainSD

• evAlerting() sent by PBX[0]->itsline[1] to Tel0 in MainSD

• evAlerting() is received by one of the instances in the RefSD

• Messages evOffHook() and evAnswerCall() occur in the MainSD

• evAnswerCall() sent by PBX[0]->itsline[1] is sent to Tel0 in
MainSD

• evAnswerCall() is received by one of the instances in the RefSD

• System border sends evOnHook() to Tel0 in the MainSD

• One of the instances in the RefSD receives evOnHook() in RefSD

Note: Limitation - Type of message arguments going to decomposed life lines are not
known. All arguments are treated as input arguments.

In order to drive messages that are directed to decomposed life lines, a receiver instance
must be specified. Open the features dialog of the decomposed life line, click on Tags tab,
add a new tag RTC_receiver (if not available) and also a value like Telephone[0] as
shown in Figure 3.

The following rules are applied by TestConductor in order to drive those messages.

1. If an instance line is not decomposed
• not realized messages to such a life line are filtered out with a warning

• if the life line is not realized the test is not executed

182

2. If a life line is decomposed into ObjectAndItsParts
• if the life line is not realized the test is not executed

• if the life line is realized then for each driven message the tag RTC_receiver is
used to define the proper receiver of the message.

• if the tag is not defined then the message is sent to the instance the life line is
realized to.

3. If an instance line is decomposed into ObjectAndDerivedFromSD
• tag RTC_receiver is used to define the receiver instance of driven messages

• if the tag is not defined then the message is sent to the instance the life line is
realized to

• if the tag is not defined and the message is not realized then the message is filtered
out

4. If an instance line is decomposed into Smart
• if a reference sequence diagram has been defined then see 3.

• otherwise see 2.

Part Decomposition Support for Testing

183

Life lines can represent objects and its parts. Consider the Sequence diagram “ObjectSD”
above. In the features tab for life line PBX, we have class PBX as Realization and
ObjectAndItsParts as MappingPolicy. Instance line PBX represents object PBX and its
parts. evOffHook() and evOnHook() are sent to the parts of PBX from the environment.
TestConductor treats these messages as going to object PBX or any of it parts.
evOriginateCall() is an internal message of PBX, which is sent between the internal
parts of PBX. In other words, TestConductor takes a black box view for life lines with part
decomposition.

Advanced Sequence Diagram Test Definition
The TestConductor test definition dialog enables you to define and configure advanced
sequence diagram test cases. Using the dialog box, you can define a name of the test, a
description and you can add several sequence diagram instances to the test case. The
sequence diagram instances are marked as Monitor Only, Driver and Monitor or Black-
Box and parameters are bound to concrete values. In addition, for every sequence diagram
instance, you choose the interpretation order (Linear or Partial) and execution mode. The
Execution Mode specifies whether the sequence diagram instance must be tested one time
or repeatedly in a cycle. You can order sequence diagram instances with Single Iteration
or in an Ordered Predecessor order.

184

Defining a Sequence Diagram Test
There are four steps in defining a test using the Define Test dialog:

1. Create the sequence diagram test case.
2. Define a new sequence diagram instance.
3. Map the parameters.
4. Close the dialog.

The following sections describe these steps in detail.

Creating a Sequence Diagram Test Case
There are three possible ways to define a sequence diagram test case:

1. Right-click on the test context and select Create SD TestCase. This creates
automatically a new test scenario sequence diagram with lifelines of all classes (SUT
and test components) of the test context.

2. Right-click on the test context and select Add New > TestingProfile > TestCase.

For the second way you have to use the Define Test dialog (shown on page 185). Use
sequence diagrams could be sequence diagrams from the analysis phase, a recorded

185

animated sequence diagram from manually driven animation, or a newly drawn test
scenario sequence diagram.

Adding a New Sequence Diagram Instance
When you add an sequence diagram instance to a test case definition, you select and
reference a sequence diagram from the Rhapsody repository, define a name for that
particular instance in the test configuration, and bind the parameters to concrete values (if
parameters are used in the sequence diagram). TestConductor automatically extracts the
defined activation condition of the referenced sequence diagram from the Rhapsody
repository and displays it in read-only mode in the text field.

To add a sequence diagram instance to the list, do the following:

1. In the Define Test dialog box, click Add SD Instance.
2. The fields SD-Instance Name, Sequence Diagram, and Description of SD-Instance,

and the radio buttons Execution Mode, SD Interpretation (Order), and Execute
SD-Instance become enabled so that you can enter data.

3. In the SD-Instance Name field, type a descriptive name. For example, “Tel 1 calls Tel
2”.

4. The Sequence Diagram drop down list includes all the sequence diagrams from all
packages specified in the project. From this list, select one sequence diagram. The
following figure shows the list of sequence diagrams for the PBX example.

Note: You do not have to save the sequence diagrams before using them to define and
execute tests because the created sequence diagrams are immediately part of the
model. The read-only field Activation Condition shows the corresponding value
for the specified sequence diagram. You can change this value by editing the tag
RTC_ActivationCondition of the corresponding sequence diagram.

5. In the field Execute SD-Instance as, select one of the following options:

• Driver and Monitor—Invokes automatic driving of model execution after the test
has been activated. In other words, TestConductor automatically injects events into
the running Rhapsody model according to the specified sequence diagram.

• Monitor Only—Invokes manual driving of model execution. This means that,
during test execution, you must inject input events manually using the Rhapsody
animation tool or the project GUI (when available). TestConductor monitors the
reception of these events and internal messages between system objects.

186

• Black-Box—Considers only those messages that originate at the system border (to
be driven by TestConductor) or that go to the system border (to be monitored by
TestConductor). The remaining messages are not considered because they are
internal to the system.

6. In the field SD Interpretation (Order) select one of the following options:

• Linear—Specifies that TestConductor should monitor the sequence diagram under
test assuming that all events and messages are arranged in a strict sequence. The
vertical drawing order of messages in sequence diagrams is used to compute an
absolute sequence of events and messages (each message in the sequence diagram
has a unique predecessor and successor).

• Partial—Specifies that TestConductor should monitor only the order of events
located on the same line (instance line or message arrow).

Note that partial order set together with driver and monitor implies that driving the
input events is independent from monitoring the internal messages. To avoid the
arising nondeterminism, TestConductor first drives inputs and then monitors
internal messages. TestConductor chooses one valid order of messages to be
driven (in particular, this order changes in general when the same sequence
diagram test case is executed repeatedly). Such nondeterminism does not exist
for linear order interpretation, because it is a precise order between all messages in
a sequence diagram. See chapter Linear and Partial Order (on page 158), for the
explanation of partial order. Note that there is no nondeterminism for monitor only,
because you decide when you inject all inputs, and TestConductor monitors
internal messages as they appear in the running model.

7. In the Execution Mode field, select one of the radio buttons:

• Single Iteration—Drives the sequence diagram instance only once. TestConductor
will generate only one run-time instance of the sequence diagram.

• Multiple Iteration—Drives the sequence diagram instance in a cycle. This option
is defaulted to 0 which implies infinite execution of an sequence diagram instance
if the activation condition of the corresponding sequence diagram is set to TRUE.
When a concrete number is supplied here, it implies the number of times the
sequence diagram instance will be executed. In batch mode execution, the number
10 helps to avoid infinite looping of tests.

• Ordered Predecessor—Specifies the execution order between two sequence
diagram instances. From the drop-down list, select an available sequence diagram
instance that must be executed before the current sequence diagram instance is
activated.

8. If desired, specify a description in the Description of SD-Instance field. This field
does not influence test execution, but can be used to describe the purpose of the
specific sequence diagram instance.

Mapping Parameters
For a parameterized Rhapsody sequence diagram, map its parameters to concrete values as
follows:

1. Click Parameter Mapping to display the parameter mapping list for the sequence
diagram. For a “concrete” sequence diagram, this list is empty. The following figure
shows the parameter list for the Tel 1 calls Tel 2 sequence diagram.

187

2. Double-click on the name of the parameter to map. The Define Parameter dialog is
displayed, which enables you to bind the parameter to a concrete value in the current
sequence diagram instance.

3. In the Value field, type an object name of the corresponding class, or a value for a
message argument.

Click OK to add the specified parameter value to the list of the parameter mappings or
click Cancel to discard the changes.

3. Repeat Step 2 and Step 3 to bind all the parameters in the list to concrete values. The
following figure shows the completed list.

5. Click Apply to bind the values to the parameters and dismiss the dialog, or click Close
to dismiss the dialog without binding the parameters to new values. You return to the
Define Test dialog.

6. To add the current definition of the created sequence diagram instance to the test, click
Apply SD. The sequence diagram instance is accepted as part of the test
configuration.

If you do not apply the instance to the test, but continue with another sequence diagram
instance, TestConductor automatically applies the first instance for you. If you dismiss the
complete test case definition dialog, the sequence diagram instance definition is discarded.

Note: For each sequence diagram in the repository, you can add many sequence diagram
instances to a test (for example, with different parameter values). At any time, you

188

can easily modify any of the information specified for a given test. For example,
you could add other sequence diagram instances, or specify another instance
testing mode.

Don't care values, Ranges, and Tolerances

Don't care values
In some cases you might not be interested in checking actual parameter values. If

• Messages carry values that change whenever you re-run your application (sensor
values, etc.). TestConductor should not compare the actual values with the
specified values.

• Message parameter is a pointer to a structure. TestConductor can not compare the
actual values in the structure.

• Some specific parameter values are not interesting at all for your test. You can
switch on/off monitoring and checking of actual parameter values. For every
message playing a role in your test you specify don’t care either

• For a whole test, or

• For a single message instances in the used scenarios.

You can even switch on/off monitoring of parameter values for every single parameter of a
message

To specify tolerances as don’t care values:

• Replace the parameter values for message instances in the sequence diagrams with
the ‘*‘ symbol (see picture above), or

189

• Press the Tolerances button within the Define Test dialog

• The table lists all messages of all sequence diagrams used in the test

• The don’t care values in the table ‘override’ concrete values in sequence diagrams

• Double-click on a parameter to set/unset ‘*’ for the parameter

• Double-click on a message to set/unset ‘*’ for all parameters of the message

• Click on (Un-)Set All “*” to set/unset ‘*’ for all parameters of all messages

• Don’t care information are stored with the test

• Show As SD also shows use of don’t care values

Don’t care ’*’ can also be assigned to the variables used in sequence diagrams. Open the
parameter mapping window and assign ’*’ to the variables which you want to set as don’t
care which is equivalent to specifying ’*’ in the sequence diagram.

190

Note: Do not use ‘*’ for messages that are driven by TestConductor!

Note: You must not inject an event into your application with ‘*’ as value for an input
parameter

Range Setting
Range setting allows monitoring and checking if concrete values of message instances are
in a given specified range. Checking ranges is required if messages have parameters that
carry values which deviate from run to run. Speed and temperature are good examples
since it is unlikely that the values are always the same. Usually temperature is in a certain
range, e.g. between 36.5 and 36.9 degree Celsius for humans. Users must be able to
specify that they do not care about specific single values, but about certain value ranges
throughout testing. Similar to ’don’t care’ settings shown in the previous section, we use
the same Tolerances dialog to specify the ranges also.

• For every single message instance in a sequence diagram users can specify which
parameter should be treated as range of values. A special notation will be used to
indicate ranges instead of specific values. Notation:
[<lower_value> .. <upper_value>]

Users can express "m(p1=1, p2=*, p3=[1.5 .. 1.7])" to state that p1 must equals
'1', p2 is "don't care", p3 must be in the range between '1.5' and '1.7'. In the PBX model,
we could use the range of [0..4] for the digit of the message evDigitDialed in
specified sequence diagram.

Note: lower_value and upper_value may be of scalar types like integer, long, double
etc.

191

Alternatively, users may want to specify one specific range of values for a given message
parameter for a whole test. This might for instance be desired if a certain measured sensor
value globally must be in a certain range. E.g. a measured temperature must always be in
the range between 0 and 100 degree celsius. Otherwise it is considered to be an error. For
the PBX model, we set the range of [0..4] for the digit of the message
evDigitDialed() in the Tolerances dialog as shown below.

The range for the messages which has a parameter as a variable can also be specified in
the parameter mapping dialog as shown in the figure below. If we have n1 and n2 as
variables in the sequence diagram, we can set the range for variables in the parameter
setting dialog.

192

Tolerances
Users may want to specify a tolerance for a message parameter for the whole test. Suppose
that a model contains a message M(temperature p). In a recorded animated sequence
diagram several instances of M might occur, because temperature is measured periodically.
E.g. M(p=27.6), M(p=29.2), M(p=31.1), etc. If such a recorded sequence diagram
is used for a test, the user must either manually specify a range of values for every single
message instance of M in the recorded sequence diagram, e.g. M(p=[27.4..27.9]),
M(p=[29.0..29.8]), M(p=[31.0..31.5]) or we could define a global tolerance for
parameter p of message M in the whole test, e.g. "p = +-0.5", meaning that the concrete
values in the message instance might have a deviation of '±0.5' from the specified values.

Note: Tolerances can be specified on a per test basis in the table. Users cannot specify
parameter tolerances in the sequence diagram.

Note: Tolerances cannot be specified in the parameter mapping dialog.

Note: Tolerances apply to both the parameter values and to parameter ranges.

Setting the tolerance of ’+-2’ for the parameter digit in the PBX model is shown in the
following figure. Message evDigitDialed(Digit = 1) is seen by TestConductor as
evDigitDialed(Digit = [-1 .. 3]), which is a range of ’±2’ and
evDigitDialed(Digit = 2) is seen by TestConductor as evDigitDialed(Digit =
[0 .. 4]), which is a range of ’±2’ as specified as the tolerance.

193

Priority rules for the Tolerances
TestConductor will apply priority rules on the parameter values for test execution in the
following order:

1. If in the Tolerances table a parameter is set as don't care '*' this will be applied for test
execution

2. If don’t care’*’ is set in the sequence diagram, this will be applied
3. If a range of values has been specified in the Tolerances dialog, it will be applied for

test execution
4. If a tolerance has been specified in the Tolerances dialog this will be applied for test

execution
5. Range setting in the parameter mapping dialog or the range setting in the sequence

diagram will be applied.
6. Next the value setting in the parameter mapping window or values as specified in the

sequence diagrams are used for testing

194

Note: Value ranges and tolerances can not be applied to messages driven by
TestConductor, since driving always requires concrete values.

Note: Value ranges and tolerances can be used only for pre-defined scalar types int,
long, float, etc. such that TestConductor can apply standard compare
operations (<, >, =) for the checking.

Note: Ranges of values and tolerances can not be applied to structured types or user
defined enumeration types.

Syntax for Tolerances
The syntax for specifying don’t care values, range values and tolerances is as follows:

• Don’t care: *

• Range value: [<lower_value> .. <upper_value>]

• Tolerances: <tolerance_value>

where lower_value and upper_value and tolerance_value can be of pre-defined scalar
types int, long, float, etc. such that TestConductor can apply standard compare
operations (<, >, =) for the checking. While don’t care values and range values can be
specified in specification sequence diagrams, in the Parameter mapping dialog and in the
Tolerances dialog, tolerance values can be specified only in the Tolerances dialog.

Exiting the Define Test Dialog Box

There are two ways to exit the Define Test dialog:

• Click OK to save the test.
If you click OK, TestConductor automatically adds all your test modifications to
the current model.
Alternatively, you can add the current test to the model and exit the editor by
pressing Enter, but only if the Description of Test and Description of SD-instance
fields are not currently active. If you press Enter in the description fields, it adds a
line-feed in the description.

Note that the TestConductor dialog accepts any test definition, even if it is
incomplete (for example, you did not specify a sequence diagram instance). If you
try to execute an incomplete test configuration, TestConductor displays an error
message.

• Click Cancel to discard the test.
To ignore all changes made during the test definition session, click Cancel.
TestConductor prompts you to confirm the lost changes; click Yes.

Note: It is not possible to execute tests directly from the Define Test dialog.

195

Use Cases of Sequence Diagram Test Cases
This section shows some sample test cases including different combinations of sequence
diagram instance settings (execution mode, sequence diagram interpretation order with
monitor or driver), as well as combinations of different sequence diagram instances to be
executed in one test with different modes.

Simple Monitor
This example explains how to define a simple watchdog. The following figure shows a
test configuration with independent sequence diagram instances to be driven manually,
infinitely many times. TestConductor monitors whether the computed order of messages
corresponds to that specified in the sequence diagrams.

To define this watchdog, do the following:

1. Modify the “A telephone calls Telephone[0]” sequence diagram to make it generic:
• In the sequence diagram editor, replace the concrete object name

PBX[0]-> itsTelephone[1]:Telephone with the parameter
caller:Telephone.

196

2. Select in the Rhapsody browser the test scenario “A telephone calls
Telephone0_Variables” and click on the cross beside of the name of the test scenario
sequence diagram to open the tag view.

3. Open the Feature dialog of the RTC_SDParamters tag
4. Select the General tab, click into the Value field and type caller, the name of the

parameter.

5. Apply the changes and close the Feature dialog

To define a new test case and connect the sequence diagram, do the following:
6. Select the test context and choose from the context menu Add New > TestingProfile

> TestCase
7. Rename the newly created test case to “All_call_Tel1”
8. Select the test case “All_call_Tel1” and choose from the context menu Edit TestCase

SDInstance
9. Verify the name of the test “All call Tel1” and add the description “All telephones call

Telephone[0] independently.”
10. Click Add SD-Instance. Type the name of the sequence diagram instance “Tel2 calls

Tel1” and select the sequence diagram “A telephone calls Telephone[0]” from the
drop-down list.

11. Select the following radio buttons:
Monitor Only execution
Partial order, to set manual driving

197

Multiple Iteration, to have TestConductor check this property several times
during test execution

12. Click Parameter Mapping to display the list of parameters for the sequence diagram
and double-click caller.

13. Insert the formal name of Telephone 2, “PBX[0]->itsTelephone[1]”, then click OK.
14. In the Parameter Mapping List, click Apply to bind the parameter with the concrete

name.
15. If desired, add a description of the sequence diagram instance in the field at the

bottom of the dialog box. For example, you could describe the requirements specified
in the corresponding sequence diagram.

16. Click Apply SD-Instance. TestConductor adds the specified sequence diagram
instance to the SD-Instances in Test list.

17. Repeat Step 1 to Step 6 to create two other sequence diagram instances with similar
settings and parameter mappings that correspond to Telephone 3 and Telephone
4.

The completed test checks that Telephones 2, 3, and 4 can call Telephone 1 in any
order. You can execute the test infinitely many times by injecting events manually, as
specified in the “A telephone calls Telephone[0]” sequence diagram.

Automatic Driver
This example shows how to define an automatic driver with several independent sequence
diagram instances. The following figure shows a test configuration with independent
sequence diagram instances of the “X_calls_Y” sequence diagram (see page 172) and the
“Receive_X” sequence diagram (see page 171). You specify the implicit order enforced
between some of the sequence diagram instances using the activation conditions and
parameter mappings. TestConductor drives events sent from the environment axis and
monitors whether the order of “internal” messages corresponds to that specified in the
sequence diagrams.

198

Mapping the parameters of the “X_calls_X” sequence diagram to different concrete names
for different sequence diagram instances makes these sequence diagram instances
completely independent. To define the automatically driven independent calls test, add
four sequence diagram instances with the settings described in the following summary of
the test.

199

This test checks that Telephone 1 can call Telephone 2, and Telephone 3 can call
Telephone 4 independently at the same time. In addition, it checks that Telephones
2 and 4 can reply and complete calls independently. The test can be executed only one
time due to the selected Single Iteration for all SD instances in the test configuration.
Setting Multiple Iteration to 0, with driver and monitor mode can lead to infinite test
execution. In this case, you should specify adequate activation conditions for the
corresponding sequence diagrams.

Ordered SD Instances
Using activation conditions, you can specify a predecessor order implicitly. This order
might depend on the parameter mapping, and is an order of sequence diagram instance
activations. For example, during execution of the test described in the previous section,
the “Tel2 receives a call” sequence diagram instance is activated before the “Tel1 calls

200

Tel2 SD” instance has been fully traversed. The following example shows the usage of
explicit ordering of sequence diagram instances within a test configuration.

Note: Currently, TestConductor does not support ordered predecessors with multiple
iterations.

The “Calling_All_Telephones” test configuration contains the following instances:

• Four instances (Receiver_1, Receiver_2, Receiver_3, and
Receiver_4) of the “Answering_Call” sequence diagram. These sequence
diagram instances are specified as driver and monitor with linear order and
multiple iterations. They have disjointed parameter mappings (different concrete
names bound to their parameters).

• Six instances of the “Ringing_Another_Party” sequence diagram (see the section
“Condition Marks”). They are set as driver and monitor with linear order. They
specify calls from Telephone 1 to Telephones 2, 3, and 4, and from
Telephone 4 to Telephones 1, 2, and 3 with predecessor order as
follows:

 The “Tel_1 calls Tel_2” sequence diagram instance has single iteration.

 The “Tel_1 calls Tel_3” sequence diagram instance has “Tel_1 calls Tel_2” as
its Ordered Predecessor.

 The “Tel_1 calls Tel_4” sequence diagram instance has “Tel_1 calls Tel_3” as
its Ordered Predecessor.

 The “Tel_4 calls Tel_1” sequence diagram instance has “Tel_1 calls Tel_4” as
its Ordered Predecessor.

 The “Tel_4 calls Tel_2” sequence diagram instance has “Tel_4 calls Tel_1” as
its Ordered Predecessor.

 The “Tel_4 calls Tel_3” sequence diagram instance has “Tel_4 calls Tel_2” as
its Ordered Predecessor.

The following figure shows the corresponding settings in the Define Test dialog.

201

During test execution, each of the last five sequence diagram instances can be activated
only when the following two conditions are fulfilled:

• The sequence diagram instance specified in the test configuration as its predecessor
has been fully traversed (passed or failed).

• Its activation condition becomes TRUE.

The specified test checks the following:

• Telephone 1 can call all other telephones consecutively.

• Telephone 4 can call all other telephones consecutively.

• Telephones 1, 2, 3, and 4 can answer calls as many times as they get the
event evRing (as specified in the activation condition of the “Answering_Call”
sequence diagram).

Driver-Assisted Monitor
The following examples show how to use driver-assisted monitors.

Example 1: Monitors and Drivers Specified as Sequence Diagram

202

This example shows how to define a combination of drivers and monitors. The
“Driver_Assisted_Monitor” test configuration contains instances of the “Receive_X”
sequence diagram (see page 171) and the “X_calls_Y” sequence diagram (see page 172).
The sequence diagram instances have the following settings:

• Four instances (Receive_1, Receive_2, Receive_3, and Receive_4) of
the “Receive_X” sequence diagram are specified as driver and monitor with linear
order and multiple iteration. Their parameter mappings correspond to
Telephones 1, 2, 3, and 4 and Lines 1, 2, 3, and 4, respectively.

• Four instances (“Tel_1 calls Tel_2”, “Tel_2 calls Tel_3”, “Tel_3
calls Tel_4”, and “Tel_4 calls Tel_1”) of the “X_calls_Y” sequence
diagram are specified as monitor only with partial order, single iteration, and the
corresponding parameter mappings. The following figure shows the example of the
parameter mapping for the “Tel_2 calls Tel_3” sequence diagram instance.

The test checks that every telephone can call the next telephone, and the telephone can
reply and finish the communication. This test can be done for every specified pair of the
telephones, independent of the order of the pairs. During test execution, you must drive

203

the model manually, as specified in the instances of the “X_calls_Y” sequence diagram.
TestConductor completes the execution of the instances of the “Receive_X” sequence
diagram whenever they have been activated.

Example 2: Unspecified Manual Driving

You can drive your model manually in an order not specified in any sequence diagram.
This means that you do not check this part of a behaviour. For example, you can specify
only communications between actor instances and internal objects when the actors have
behaviour (code has been generated for them). The following sequence diagram shows
such a specification for a new model. In this case, the new events evSuspend and
evRestart are sent to the Line class from the Administrator actor.

The following “Check Administrator” test configuration defines a driver with an instance
of the “testActor” sequence diagram.

204

This test checks that a new feature added to the system as the Administrator behaviour
does not change the main behaviour of the model (in other words, User can make a call as
previously specified). During test execution, you must inject input events for
Administrator and User to stimulate them to send events specified in the “testActor”
sequence diagram. TestConductor monitors all messages between the actors and internal
objects specified in the sequence diagram under test.

Choosing Between Alternatives in a Cycle
The predecessor ordering of sequence diagram instances provides a means to construct a
tree or a forest (set of trees) of the related sequence diagram instances, but does not allow
any cycle or choice between alternatives. Activation conditions/condition marks serve as
another way to set causal dependencies between sequence diagram instances. The
following test configuration explains how to combine predecessor ordering with multiple
iteration to specify cycles with choice.

Consider the “X_and_Y_call_together” sequence diagram, with partial order
interpretation.

205

The specification says that two telephones can dial any numbers independently of each
other whenever the environment sends them the evOffHook event. If these telephones
call each other (specified by the corresponding mapping of the parameters nr1 and nr2),
the continuation depends on the order in which you have injected events from the
environment to the telephones. A callee can be busy or answer the call.

The “Stop_Busy_Call” sequence diagram, shown in the following figure, specifies that a
caller put the telephone on the hook if it gets the evBusy event. The “Busy_or_Free” test
includes instances of the “X_and_Y_call_together” sequence diagram, the
“Stop_Busy_Call” sequence diagram, and the “Answering_Call” sequence diagram.

The following figure shows the corresponding settings in the Define Test dialog.

206

The following information file of the test case definition summarizes the complete test
description.

207

The test checks the following:

• Telephone 2 and Telephone 3 call each other independently.

• If a callee (Telephone 2 or Telephone 3) is free, it answers the call.

• If a callee is busy, the caller hangs up.

You can execute the test continuously, injecting events to Telephone 2 and Telephone
3. TestConductor monitors the “Tel2 and Tel3 call” sequence diagram instance and
drives the remaining ones, selecting those relevant to the current situation. Note that the
instance of the “X_and_Y_call_together” sequence diagram is the predecessor for the
remaining four instances in the test configuration. This means that the sequence diagram
instances “Tel2 stops”, “Tel3 stops”, “Tel2 answers”, and “Tel3 answers” can
be activated only after the Tel2 and Tel3 call instance has been activated and partially
traversed. This order (and the choice between alternatives) is specified with the activation
conditions and Condition Marks, but become valid only after the parameters have been
bound to the corresponding names.

User Defined Driving Operation Calls
The default implementation of a driver operation generated by TestConductor may be
overwritten and customized by the user, by stereotyping the message with stereotype
<<RTC_MsgInfo>> in the sequence diagram and setting the corresponding values for the
tags

TestBehavior::RTC_MsgInfo::RTC_DriverCallCode,
TestBehavior::RTC_MsgInfo::RTC_DriverCallCodeAdditional,
TestBehavior::RTC_MsgInfo::RTC_DriverInitCode,
TestBehavior::RTC_MsgInfo::RTC_DriverInitCodeAdditional,

208

Usually, if the user modifies driver operations in the model, then this information is lost if
the user updates a test case. The user can influence the generated code for driver
operations and stub operations. Using the tags
TestBehavior::RTC_MsgInfo::RTC_DriverCallCode,
TestBehavior::RTC_MsgInfo::RTC_DriverCallCodeAdditional,
TestBehavior::RTC_MsgInfo::RTC_DriverInitCode,
TestBehavior::RTC_MsgInfo::RTC_DriverInitCodeAdditional,

the content of these tags is not lost during update of a test case.

The value for RTC_DriverInitCode is taken as the beginning of the driver operation
body containing the initialization of necessary variables, whereas the value for
RTC_DriverCallCode is taken as the trailing part of the driver operation body
containing the call of the function to be driven.

Note that both properties can be overwritten separately by the user. In case the user wants
to customize the initialization section only, only the property RTC_DriverInitCode has
to be overwritten; TestConductor will continue to automatically generate the code for the
driver call section (and vice versa).

The value for RTC_DriverInitCodeAdditional is taken as additional initialization
code that is generated in addition to the initialization code generated by TestConductor.
The content of this tag is generated directly after the auto generated initialization code.
Similarly, the value for RTC_DriverCallCodeAdditional is taken as additional call

209

code that is generated in addition to the auto generated call code. The content of this tag is
generated directly after the auto generated call code.

RTC_DriverInitCode and RTC_DriverInitCodeAdditional
The user can influence the initialization of arguments before the message is driven using
the tags RTC_DriverInitCode and RTC_DriverInitCodeAdditional. To do this
uses have to add the stereotype RTC_MsgInfo to the SD message. This adds automatically
the tags RTC_DriverInitCode and RTC_DriverInitCodeAdditional to the
message. The user can fill these tags with code which will be used as initialization code of
the driver operation when the test case is updated. Important is that the context of
RTC_DriverInitCode completely replaces the initialization code that would be
generated by TestConductor automatically, whereas the content of
RTC_DriverInitCodeAdditional is simply added to the auto generated initialization
code.

In some cases it is advisable that the user copies all or the needed parts of the
automatically generated driver initialization code section and paste it into the tag
RTC_DriverInitCode before starting to implement his own changes.

RTC_DriverCallCode and RTC_DriverCallCodeAdditional
The user can also influence the call of the driven operation using the tags
RTC_DriverCallCode and RTC_DriverCallCodeAdditional. To do this he users have
to add the stereotype RTC_MsgInfo to the sequence diagram message. This adds
automatically the tags RTC_DriverCallCode and RTC_DriverCallCodeAdditional
to the message. The user can fill these tags with code which will be executed after the
initialization of arguments. Important is that the content of RTC_DriverCallCode
completely replaces the code that would be used to invoke the driven operation if
TestConductor generated the code automatically, whereas the content of
RTC_DriverCallCodeAdditional is simply added to the auto generated call code.

Note, in this scenario the user has has the responsiblitythat the sequence diagram test case
is indeed executable after customization. Basically, the specified message of the sequence

210

diagram test case, which now is present as source code, has to be represendted in the user
defined code.

In some cases it is advisable that the user copies all or the needed parts of the
automatically generated driver call code section and paste it into the tag
RTC_DriverDriverCode before starting to implement his own changes.

Clean TestComponent
Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of a test component at once.
To clean a test component select the test component und choose from the context menu the
item Clean TestComponent.

211

Clean TestPackage
Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of all test components of a
TestPackage at once. Furthermore, Clean TestPackage also deletes all results and
coverage results from the TestPackage.

To clean a test package select the test package und choose from the context menu the item
Clean TestPackage.

To regenerate the driver an stub operations select the test case or the test context or the test
package and choose from the context menu the item Update
TestCase/TestContext/TestPackage.

Deleting User Defined Driver Operation Calls
TestConductor uses user defined operation calls if the tags
TestBehavior::RTC_MsgInfo::RTC_DriverInitCode and
TestBehavior::RTC_MsgInfo::RTC_DriverCallCode are not empty, even if the
tags are overwritten. To delete the user defined operation call and use the auto generated
driver operations from TestConductor, reset the tags to delete the content of the tag.

212

User Defined Stub Operation Calls
Stub operations are created for any operation call in the sequence diagram going from the
SUT to a test component if the following items are all true:

• a return value (or a returned value for an out or in/out argument) is specified for
this operation

• the tag TestConductor::RTC_MsgInfo::RTCMonitor for the sequence
diagram message is set to false

• the tag TestConductor::RTCInstInfo::RTCMonitor for the To-sequence
diagram instance line is false

TestCondoctor needs the ability to determine and control the value returned by the
operation. On the other hand there might be calls to the same operation without a specified
return value or the operation is called by a test component on a test component: because of
this TestCondoctor has to generate a different body for the operation, but it must still be
possible to call the original operation.

To ensure this, TestCondoctor creates a copy of the original operation with the name
orginal_ followed by the operations name, having the same signature. In the
implementation body of this so called DefaultOperation the original function is called
non-virtually. For every occurrence of the operation where it should be stubbed, a new
operation is added to the test component with the same signature of the original operation.
This so called StubOperation returns the specified return value, out and in/out arguments.
The name of the stub operation is the concatenation of the name of the test case, the string
“_stub_”, the name of the original operation followed by a number to make it unique.

The body of the original operation is deleted completely and a new implementation is
generated this way: The operation does a call to a special TestCondoctor operation and
uses the OMString value returned by TestCondoctor in a switch statement to select which
operation should be called. If a stub operation has to be invoked TestCondoctor returns its
GUID, if the original operation has to be called TestCondoctor returns an empty string.

213

The actual values of formal parameters defined for the sequence diagram or sequence
diagram instance are propagated to the stub operation this way: If any parameter is used in
the return value or out or in/out arguments of the operation that has to be stubbed, then in
the body of the stub operation this parameter is exchanged with the value of the parameter.

RTC_StubBodyCode
Normally, if the user modifies stub operations in the model, then this information is lost if
the user updates a test case. The user can influence the code of the stub using the tag
RTC_StubBodyCode. To do this he has to add the stereotype <<RTC_MsgInfo>> to the
sequence diagram message, this adds automatically the tag RTC_StubBodyCode to the
message. The user can fill this tag with code which will be used as body of the stub
operation when the test case is updated. Important is that this code completely replaces the
body that would be generated by TestConductor automatically.

An important limitation is: only virtual operations can be stubbed. Since the SUT is
implemented, in the SUT code operations of other design classes are called. For instance,
a class A which is the SUT class may call a operation “f” of a class B. Now, in a given test
architecture, a new test component class BT is introduced that inherits from B in order to
be able to use an instance of class BT instead of an instance of class B directly. However,
the SUT code still calls the operation “f” of B, since the SUT code remains untouched.
But when “f” is a virtual operation, the virtual dispatching mechanism of UML ensures
that the most specialized variant of the operation is called, i.e., if class BT implements a
new version of the called operation “f”, then this function is called. This function can be
stubbed, since it is defined in the testing component BT. However, if the SUT calls a non-
virtual function, it cannot be stubbed since this operation is in general not defined in a
testing component.

If an operation is stubbed multiple times in the same test component in the same sequence
diagram instance, then for each occurrence an individual stub operation is generated.

214

If an operation is stubbed multiple times in the same test component in the same SUT in
different test cases respectively sequence diagram instances, then for each occurrence an
individual stub operation is generated.

Tip: In case TestConductor has not created stub operations for a sequence diagram
message, the at the beginning mentioned conditions are not fulfilled. To “inspire”
TestCondutor to create such stubbing functionality anyhow, the user can define
“*” as expected return value for the sequence diagram message followed by an
update on the test case. In some cases TestConductor will then create the
customizable stubbing functionality as shown in the above picture.

Clean TestComponent
Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of a test component at once.
To clean a test component select the test component und choose from the context menu the
item Clean TestComponent.

Clean TestPackage
Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of all test components of a
TestPackage at once. To clean a test package select the test package und choose from the
context menu the item Clean TestPackage.

215

To regenerate the driver an stub operations select the test case or the test context or the test
package and choose from the context menu the item Update
TestCase/TestContext/TestPackage.

Deleting User Defined Stub Operation Calls
TestConductor uses user defined operation calls if the tags
TestBehavior::RTC_MsgInfo::RTC_StubBodyCode are not empty, even if the tags
are overwritten. To delete the user defined operation call and use the auto generated stub
operations from TestConductor, reset the tags to delete the content of the tag.

Black-Box Testing of External Files and Libraries
TestConductor comes with the C++ sample CppTestingExternalFiles. This project
contains the package PkgUseExternalFiles, where two files are defined. The declared
external file ExternalFile_ArithmeticCPP consists of a source file
arithmetic.cpp and the corresponding header file arithmetic.h. The file
ExternalLib_LogicLib consist of the library LogicLib.lib and a corresponding
header file LogicLib.h. Further information on how to define files can be found in the
Rhapsody User Guide.

Open the feature dialog of a file, select the Properties tab and browse the overwritten
properties of ExternalFile_ArithmeticCPP.

216

CG.Class.UseAsExternal is set to TRUE.

CG.Class.FileName determines the basename of the referenced external file. This
property defines ExternalFile_ArithmeticCPP to refer to arithmetic.h in the
project's ExternalSrc-directory.

CPP_CG.Class.Animate is set to FALSE. Whatever the library or the external source
file contains Rhapsody animated code, the property has to be set to FALSE. Setting this
property to FALSE means, that the file, which will become in this example the SUT, will
not be animated. Furthermore, disabling the animation of the SUT means to perform a
black-box test.

In order to use external header and implementation in code-generation, component
UseExternalFiles defines the additional include-path "../..", which refers to the
project's root-directory. The implementation of the external functions is made available to
code-generation by defining additional source
"../../ExternalSrc/arithmetic.cpp". In order to link the library the configuration
UseExternalFiles::Default defines under Libraries
“../../LogicLib/NotInstrumented/LogicLib.lib”.

To use this example and the provided test cases in the test packages
TPkg_ExternalFile_ArithmeticCPP and TPkg_ExternalLib_LogicLib the user
has first to generate/build the LogicLib.Lib and the header file LogicLib.h. Browse
the package PkgLogicLib, set the containing configuration
LogicLib::NotInstrumented active and build the configuration by using the
Generate/Make/Run button.

Test Packages
The example comes with pre-defined test architecture for the file
ExternalFile_ArithmeticCPP. The test architecture was created as follows:

217

For testing external file ExternalFile_ArithmeticCPP, select
ExternalFile_ArithmeticCPP and choose Create TestArchitecture in the context
menu. A new test package TPkg_ ExternalFile_ArithmeticCPP will be created

In order to make test context
TPkg_ExternalFile_ArithmeticCPP::TCon_ExternalFile_ArithmeticCPP
compilable and linkable, the user has to modify code generation component
TPkg_ExternalFile_ArithmeticCPP::TPkg_ExternalFile_ArithmeticCPP_C
omp:

1. enter "../../ExternalSrc/arithmetic.cpp" into entry Additional Sources in
the General tab.

2. extend the include path in entry Include Path to "$
(OMROOT)/../TestConductor,../.."

The example comes with a pre-defined test architecture for the file
ExternalFile_ArithmeticCPP and the library ExternalLib_LogicLib. Also the
following sequence diagram test cases have already been defined:

218

To execute the test case SD_tc_0 select the test case in the Rhapsody browser and choose
from the context menu Update Test Case, Build Test Case, Execute Test Case. In the
TestConductor execution dialog click on the button Activate Test. TestConductor shows
that the test case SD_tc_0 passed. For further information select in the TestConductor
execution dialog the entry SD_tc_0 and click on the button Show as SD. The animated
sequence diagram displays the text execution result and states, that all return values
occurred as specified.

Now execute the test case SD_tc_0 in the test context TCon_ExternalLib_LogicLib.
The test will fail and the Show As SD sequence diagram will state, that the check of the
return value failed.

219

Open the test scenario SDTestScenario_0 of test case SD_tc_0 in the test context
TCon_ExternalLib_LogicLib.

The expected value in the expression “0=lNot(a=0)” is wrong. The correct return value
has to be “1=lNot(a=0)”. Correct the test scenario and re-run the test. It will pass.

Support for interfacing Files in C using
<<CInterfaceFile>> Stereotype

Rhapsody predefines a stereotype <<CInterfaceFile>> in package PredefinedTypesC.
Applying this stereotype to a file causes the code generation to just generate the
declarations of the functions without implementing them. For <<CInterfaceFile>>
afile, all functions are declared as afile_$op, where $op is the basic name of the
function. In order to use a <<CInterfaceFile>> file interface, a file can refer to the
interface using a generalization. The inheriting file should have property
C_CG.Operation.PublicName set to “<afile>_$op”, where <afile> is the
name of the <<CinterfaceFile>>. Furthermore, <<CInterfaceFile>> afile as well as the
inheriting file should override
C_CG.Operation.UseProtectedNameAndPublicNameInFile by checking
the property. Now, the inheriting file defines the implementation of the functions declared
by the <<CInterfaceFile>> afile. Other files that are desired to use these
implementations only have to refer to the <<CInterfaceFile>>. This ways, a notion of

220

interfaces can be used with files in C, declaration and implementation of functionality can
be handled separately in the model.
TestConductor offers specific support for <<CIntefaceFile>> interfaces, by stubbing the
implementations if a file to be tested as SUT refers to <<CInterfaceFile>> interfaces.

Using Serialize/Unserialize Functions for User
Defined Types

Rhapsody can animate (display) the values of simple types and one-dimensional arrays.
However, if you want to animate a more complex type, the type must be converted to a
string (char *) for Rhapsody to display it. This can be done generally in two different
ways, either by using auto-generated serialization/unserialization functions or by using
manually defined serialization/unserialization functions.

Using auto generated serialization /unserialization functions
For enum types and structure types that are explicitly defined in the model, Rhapsody
provides the possibility to use automatically generated serialization/unserialization
functions in order to display values of these types e.g. in animated sequence diagrams. In
order to use the auto generated serialization/unserialization functions for a specific type
that is defined in the model, the property “<Lang>.Type.GenerateSerializationFunctions”
must be set to “SerializationAndUnserialization”:

If this property is set correctly, for arguments with enum type one can use the literals of
the enum definition in the test scenarios, and for arguments with structure type one can
specify each attribute defined in the structure type. The following test scenario shows two
message “f” and “g” that both have two arguments, one of enum type and one of a
structure type:

221

Using manually defined serialization /unserialization functions
Besides using the auto generated serialization/unserialization functions of Rhapsody, one
can also manually define serialization/unserialization functions. These functions are global
instrumentation functions, that takes one argument of the type you want to display, and
returns a char *. Further information can be found in the chapter Guidelines for Writing
Serialization Functions of the Rhapsody User Guide. The usage of serialization functions
for Testing is demonstrated by the sample model
“Samples/CppSamples/TestConductor/CppListUsage”. Please note that serialization
functions can only be used for testing purposes if the type that should be serialized is
selected directly as an “existing type” in Rhapsody. If only the type signature is used to
specify the type of an argument type or return type, serialization functions cannot be used
for testing.

In case of non fault tolerant programming of these (un-)serialize function the
application/model may probably work during normal operation, but can crash, if the user
executes a test case on the same model. The following example shows a Sting32 type.

The user defined the following serialize function:

And connected it correctly to the corresponding property

222

During normal operation everything will work properly. But during execution of a test
case on the unchanged model the execution will crash.

The reason for the crash is the serialization function for String32, it causes a crash if it is
called with a not initialized string. If TestConductor registers as an observer the
framework notifies TestConductor about operation calls. To do this the framework
serializes the arguments of the constructor (== conversion to string).

If the serialize function for String32 is modified this way the application will not crash:

223

Failure Analysis
TestConductor detects and reports a failure if a message contained in the message set of a
sequence diagram does not appear in the specified order or if a RTC_ASSERT isn’t
fulfilled during test execution. A message from the message set is specified by its name,
the value(s) of its argument(s), the names of sending and receiving objects.

Failure analysis is an important but sometimes difficult task. This is due to the fact that
industrial-sized models show very complex behavior, with many messages flowing during
test execution.

All possible failures monitored by TestConductor can be caused:

1. By errors in the model − the computed model behavior does not meet requirements
specified by a sequence diagram

2. By inconsistencies in the test configuration or/and in the requirements

In case of using sequence diagrams for test definitions, the task of model debugging is
simplified by using TestConductor’s graphical failure reports. You can use a combination
of diverse Rhapsody analysis capabilities (for example, state chart animation, sequence
diagram animation, and sequence diagram comparison) with TestConductor to show test
executions as sequence diagrams. The colors and percentage information in the Execute
Test dialog are useful indicators in determining where the failure occurred.

Remember that during model execution TestConductor ignores all messages which are not
specified in the sequence diagram instances of the executed test. This implies that
TestConductor meets failure in the following two cases:

1. The real order of message actions during model execution does not correspond to
specifications in sequence diagram instances.

2. The real argument values of messages during model execution do not correspond to
those specified in sequence diagram instances.

During test compilation, TestConductor translates every sequence diagram instance into
internal sequence(s) of message actions specified in the sequence diagram instance. As
you activate a test, TestConductor starts the model execution and creates the first iteration
copies of sequence diagram instances without specified ordered predecessors as the
original run-time instances. During test execution, TestConductor checks the activation
condition of each created run-time instance until it gets value TRUE (that is a run-time
instance becomes active). After that, TestConductor checks every messages appearing in
the model execution. For every currently active run-time instances from the Execute Test
dialog, it compares the following:

1. Whether the current message belongs to the message set of the corresponding
sequence diagram.

224

2. Whether all message actions preceding the current message in the corresponding run-
time instance have already occurred.

If the first condition does not hold, TestConductor ignores the current message. If both
conditions hold, TestConductor marks the current message as green. If only the first
condition is fulfilled − one or more actions preceding current one in the corresponding
run-time instance have not yet appeared in the model execution − TestConductor creates a
red message, reports failure and stops to traverse the run-time instance with erroneous
message action. After that it continues to generate run-time instances with respect to the
specified execution mode, check activation conditions and new message actions.

Failure Reporting
TestConductor draws a green horizontal message arrow for operation calls that have been
monitored. Events that have been monitored in-order are drawn as slanted messages as in
sequence diagram animation. The starting point of the slanted message is where the event
has been sent. The end point refers to the point where this event must be consumed
according to the original sequence diagram specification.

Note: In our green, blue, red approach one could consider the dashed line as half-green
(event has been sent) and half-blue (consumption not yet monitored).

Following classes of errors can be detected by TestConductor:

1. Sending out of order

2. Event Sending - Parameter values do not match

3. Event Sending - Parameter values not in range

4. Consumption out of order

5. Event Consumption - Parameter values do not match

6. Event Consumption - Parameter values not in range

7. Operation Call out of order

8. Operation Call - In Parameter values do not match

9. Operation Call - In Parameter values not in range

10. Operation Call returned - Return value does not match

11. Operation Call returned - Out Parameter values do not match

12. Operation Call returned - Out Parameter values not in range

13. DataFlow Message - Value does not match

14. DataFlow Message - Value not in range

15. DataFlow Message out of order

225

16. Assertion failed

TestConductor draws a red horizontal message to visualize a failure. The red arrow refers
to a point where a message was monitored out-of-order or where parameter values did not
match. The red message is labeled with a text (M() represents the failed message):

• M():Sending out of order

• M():Event Sending - Parameter values do not match

• M():Event Sending - Parameter values not in range

• M():Consumption out of order

• M():Event Consumption - Parameter values do not match

• M():Event Consumption - Parameter values not in range

• M():Operation Call out of order

• M():Operation Call - In Parameter values do not match

• M():Operation Call - In Parameter values not in range

• M():Operation Call returned - Return value does not match

• M():Operation Call returned - Out Parameter values do not match

• M():Operation Call returned - Out Parameter values not in range

• M():DataFlow Message - Value does not match

• M():DataFlow Message - Value not in range

• M():DataFlow Message out of order

• M():Assertion <SD_instance_X: message Y> failed

TestConductor draws blue messages for messages that have not yet monitored, neither
sending nor consumption of events. Such a drawn sequence diagram contains the original
sequence diagram specification used for the test. All green and blue messages represent
the messages of the original sequence diagram. Green and blue messages, together with
the red arrow make failure analysis much easier. If the red message is erased, then the
drawn sequence diagram can be used to reproduce the same failure.

Note: Red messages can not be erased automatically from a failure sequence diagram used
in a new test. Workaround is to erase it manually if such a sequence diagram shall
be used in a test. Following samples explain the failure cases.

Event sending out-of-order

226

In this example, according to the specification: TestConductor must

1. Monitor the self message OpenConnection()
2. Monitor the operation call OpenConnection()
3. Monitor the sending of evDialTone()
4. Monitor the sending of evOriginateCall()

TestConductor sees, sending of event evOriginateCall() occurs before the sending of
evDialTone(). Thus TestConductor gives the warning “Sending out of order”.

Event sending in-order, but parameter values do not match

227

In this example, according to the specification, TestConductor must monitor the event
evDigitDialed(Digit = 1), but TestConductor is seeing evDigitDialed(Digit
= 2). Thus TestConductor reports a failure “Event Sending -Parameters values
do not match”

228

Event sending in-order, but parameter values not in range

In this example, according to the specification, TestConductor must monitor the event
evDigitDialed(Digit = 1), but TestConductor is seeing evDigitDialed(Digit
= [3..5]). Thus TestConductor reports a failure “Event Sending - Parameters
values not in range”.

229

Event consumption out-of-order

In this example, according to the specification, TestConductor must monitor

1. The operation call OpenConnection()
2. The sending of evOriginateCall()
3. The sending of evDialTone()
4. The consumption of evDialTone()
5. The consumption of evOriginateCall()

TestConductor sees consumption of evOriginateCall() before the consumption of
evDialTone(). Thus TestConductor gives the warning “Consumption out of
order”.

230

Event consumption in-order, but parameter values do not match

 Figure 1: SD with message “Event Consumption – Parameter value do not match”

In this example, according to the specification, TestConductor must monitor

1. The sending of evDigitDialed(Digit=1)
2. The sending of evDigitDialed(Digit=2)
3. The consumption of evDigitDialed(Digit=2)
4. The consumption of evDigitDialed(Digit=1)

231

TestConductor sees, event consumption of evDigitDialed() came in-order, but the
value of the parameter does not match. Thus TestConductor gives the warning “Event
Consumption - Parameter values do not match”.

Event consumption in-order, but parameter values not in range

In this example, according to the specification, TestConductor must monitor

1. The sending of evDigitDialed(Digit=[0..1])

232

2. The sending of evDigitDialed(Digit=[2..3])
3. The consumption of evDigitDialed(Digit=[2..3])
4. The consumption of evDigitDialed(Digit=[0..1])

TestConductor sees, event consumption of evDigitDialed() came in-order, but the
values in the event consumption does not fall in range specified. Thus TestConductor
gives the warning “Event Consumption - Parameter values not in range”.

Operation call out-of-order

233

In this example, according to the specification above, TestConductor must monitor

1. The self message OpenConnection()
2. The sending of evOriginateCall()
3. The operation call openConnection()

Operation call OpenConnection() from Line to CallRouter should occur after
sending of the event evOriginateCall(). Thus TestConductor reports the failure
“Operation Call out of Order”.

234

Operation call in-order, but parameter values do not match

 Figure 2: SD with message “Operation call – In Parameter value do not match”

In this example, according to the specification, TestConductor

1. Should monitor the operation call DialingDone()

235

2. Must monitor the operation call NextDigit(Digit=2)

TestConductor sees that operation call NextDigit(Digit=1) instead of operation call
NextDigit(Digit=2). Here the operation call has come in order but the parameter
value is incorrect. Thus TestConductor gives the warning “Operation Call:In
Parameter values do not match”.

Operation call in-order, but parameter values not in range

236

In this example, according to the specification, TestConductor

1. Should monitor the operation call DialingDone()
2. Must monitor the operation call NextDigit(Digit=2)

TestConductor expects operation call NextDigit(Digit=[3..4]) as specified in the
tolerance in the test definition, but sees operation call NextDigit(Digit=2) which is
out of the range. Here the operation call has come in order but the parameter value is
incorrect. Thus TestConductor gives the warning “Operation Call:In Parameter
values not in range”.

Operation call returned - Return value does not match

Here TestConductor expects a return value of 5 as of the specification but sees a 4. Thus
TestConductor gives the warning message “4=op_int(a=1,b=2,c=3) Operation
Call returned - Return value does not match. Expected values are:
5=op_int(a=1,b=2,c=3)”

237

Operation call returned - Out Parameter values do not match

 Figure 3: SD with message “Operation call returned – Out Parameter value do not match”

Here TestConductor expects a value of 3 as of the specification but sees 1. Thus
TestConductor gives the warning message “4=op_int(a=1,b=2,c=3) Operation
Call returned – Out Parameter values do not match. Expected values
are: 4=op_int(a=3,b=2,c=3)”

238

Operation call returned - Out Parameter values not in range

Here TestConductor expects the value in the range of [3..4] as of the specification but
sees 1. Thus TestConductor gives the warning message “4=op_int(a=1,b=2,c=3)
Operation Call returned - Out Parameter values not in range.
Expected values are: 4=op_int(a= [3..4],b=2,c=3)”

DataFlow Message - Value does not match

TestConductor expects dataflow ‘y=8’ but actually observed ‘y=7’.

239

DataFlow Message - Value not in range

TestConductor expects y to be within range [8..10] but actually observed ‘y=7’, i.e.
outside the expected range.

DataFlow Message out of order

TestConductor expects dataflow order ‘z=6’ before ‘y=6’ but avtually observed ‘y=6’
before ‘z=6’.

240

Assertion failed

When using test components to call operation from a SUT, TestConductor can observe
return values from this operation via an assert marco. TestConductor automatically
generates the RTC_ASSERT_SD macro in the driver operation of the test component:

//---
// Driver Initialisation Code:
//---

241

int osc_ret;
int osc_arg_1 = 5;
//---
// Driver Call Code:
//---

osc_ret = itsA->f(osc_arg_1);
RTC_ASSERT_SD("SD_tc_0","message_0",osc_ret==7);

In this test scenario TestConductor expects a return value of 7 when calling f(I=5)
on the SUT, but the actual returned value is different. Thus,
TestConductor gives the warning message “Assertion <SD_tc_0:message_0>“.
The second message “f(i=5) Operation Call did not return yet.”
Occurs, because TestConductor interrupts the execution after detecting a failing assertion.

242

Using TestConductor from
Eclipse

As an alternative to the standalone Rhapsody application, Rhapsody can also be used
directly from Eclipse (Rhapsody platform integration with Eclipse, see “Integrating
Rational Rhapsody and Eclipse” in the Rhapsody online documentation in the IBM
knowledge center). Also TestConductor can be used directly from Eclipse when using
Rhapsody platform integration with Eclipse; TestConductor does not support Rhapsody
workflow integration with Eclipse. In general, all TestConductor functionality can be used
when working with Eclipse. Similar to the standalone Rhapsody application, almost all
TestConductor functionality is available in context menus of Rhapsody elements, and this
holds also when working from Eclipse as can be seen in the following picture:

243

However, there are some differences that needs to be considered when using
TestConductor from Eclipse:

 In contrast to executing TestConductor from the standalone Rhapsody
application, the test execution windows of TestConductor are not always in
front of the Eclipse main window. Selecting the Eclipse main window may
hide the TestConductor test execution windows.

 In Eclipse, when creating a new test architecture, TestConductor automatically
creates a new Eclipse configuration instead of a normal Rhapsody
configuration. Additionally, TestConductor automatically launches the Eclipse
New Project Wizard that can be used to create a new Eclipse project that is
connected to the created Eclipse configuration.

 TestConductor does not support Rhapsody workflow integration with Eclipse.

 TestConductor does not support computation of code coverage when using
Rhapsody platform integration with Eclipse.

244

Using TestConductor from
Rational Quality Manager

TestConductor test cases can be referenced and executed from Rational Quality Manager.
A detailed description how to integrate Rational Quality Manager and TestConductor can
be found

 In the document “RQMTestConductorAdapter_HowTo.pdf” in
<Rhapsody installation>/Doc/pdfbooks.

245

TestConductor Rhapsody
Plugins

TestConductor installs some Rhapsody plugins with additional functionality. The plugins
are integrated in the TestConductor Testing Profile, this means the plugins are available for
Rhapsody projects containing the Testing Profile.

TestConductor Merge Coverage Reports Plugin
The plugin offers the functionality to merge several model coverage reports into one
combined report and to merge several code coverage reports into one combined report.

Note: The plugin supports only merging of model or code coverage reports which have
been created with Rhapsody 8.0.3 or higher. Merging of reports generated with previous
releases of Rhapsody is not supported.

Merging model coverage reports
This function can be invoked using the menu helper 'Merge Model Coverage Reports'. The
helper is available on TestPackages and supports multi selection. After invocation, the
helper collects all model coverage reports inside the selected TestPackage(s) and merges
them into one combined model coverage report which is added to the model. The
combined report contains a list of the merged reports.
If one TestPackage is selected, the combined report is added to this TestPackage. If
multiple TestPackages are selected the combined report is added to the joint parent
TestPackage of the selected TestPackages (if exist) or to a TestPackage
'MergeModelCoverageResults if the joint parent of the selected TestPackages is the project
itself.

246

Merging code coverage reports
This function can be invoked using the menu helper 'Merge Code Coverage Reports'. The
helper is available on TestPackages and on CodeCoverageResults and supports multi
selection. After invocation, the helper collects all code coverage reports inside the selected
TestPackage(s) or the selected CodeCoverageResults and merges them into one combined
code coverage report which is added to the model.
If one TestPackage is selected, the combined report is added to this TestPackage. If
multiple TestPackages or CodeCoverageResults are selected the combined report is added
to the joint parent TestPackage of the selected elements (if exist) or to a TestPackage
'MergeCodeCoverageResults if the joint parent of the selected elements is the project.

Note: Merging of code coverage reports for one source code file is supported only if the
different incarnations of this source code file are the same. If for example operations have
been added or removed or if statecharts have been modified between the generation of the
code coverage reports to be merged, then the combined code coverage report will be
wrong (and the report contains a warning).

Merging requirement coverage reports
This function can be invoked using the menu helper 'Merge Requirement Coverage
Reports'. The helper is available on TestPackages and on RequirementCoverageResults
and supports multi selection. After invocation the helper collects all requirement coverage
reports inside the selected TestPackage(s) or the selected RequirementCoverageResults

247

and merges them into one combined requirement coverage report which is added to the
model.

If one TestPackage is selected, the combined report is added to this TestPackage. If
multiple TestPackages or RequirementCoverageResults are selected the combined report is
added to the joint parent TestPackage of the selected elements (if exists) or to a
TestPackage 'MergeRequirementCoverageResult' if the joint parent of the selected
elements is the project itself.

Note: Requirement coverage reports can only be merged if the settings the reports have
been generated with (stored in their model based testing tags) are identical. If the settings
of different requirement coverage reports are not compatible only a subset of the selected
requirement coverage reports are merged. Two additional tags, involved_coverage_results
(contains all the reports that are part of the merge result) and ignored_coverage_results
(contains all reports that are omitted from the merge process), are added to a resulting
requirement coverage result to document which reports are included in the merged report.

248

TestConductor RQM Plugin
To improve the integration between TestConductor and RQM, this plugin introduces the
possibility to directly create and link RQM TestScripts while working with Rhapsody and
TestConductor. An additional Helper 'Create RQM TestScript' is available which is
applicable on TestCases, TestContexts and TestPackages.

After running the helper, the user has to specify the RQM server to connect to, user login
and password for the server as well as the ProjectArea where the TestScript should be
created.

After that, a RQM command line TestScript will be created in the specified ProjectArea.
The required fields of the command line TestScript like the path to the used Rhapsody
model or the full model path to the element which should be tested are set automatically. If
additional options should be specified for the test, the necessary adaptions have to be done
manually.

If the model is located on a RDM (Rational Design Manager) Server, the execution
variables SERVER_URL, PROJECT_AREA_NAME, STREAM_NAME, USER_NAME
and PASSWORD are automatically added to the TestScript.

In RQM, the TestScript can now be executed using the TestConductor RQM Adapter as
described in the document “RQMTestConductorAdapter_HowTo.pdf”

Also a Hyperlink to the newly created RQM TestScript is added automatically underneath
the model element for which the helper has been called. Following the Hyperlink, the
RQM TestScript can be opened directly from Rhapsody.

Note: This functionality is not available when using Rhapsody in Eclipse platform
integration.

249

TestConductor Check Model Plugin
Rhapsody has a checker feature which provides the possibility to perform structural and
behavioral checks of the model. In addition to the predefined internal checks which are
included in Rhapsody, further external checks can be defined and added to the list of
checks.

The model checks can either be performed for the active configuration or for selected
classes (Tools -> Check Model). The TestConductor checks are also automatically invoked
from the code generation.

More information about Rhapsody model checks in general can be found in the Rhapsody
User Guide in the chapter 'Checks'.

If the TestingProfile is loaded, the external TestConductor model checks are available. For
these checks TestConductor is set as its domain.

The following TestConductor checks are currently available:

 TestScenario contains unsupported SD operator (Warning)

 TestScenario contains unspecified messages (Warning)

 TestScenario contains unspecified instance lines (Warning)

 In assertion based mode, configuration needs <<TestingConfiguration>>
stereotype (Warning)

250

Appendix
TestConductor Assert Macros (C/C++),

TestConductor assert methods (Java),
TestConductor assert functions (Ada)

As described in chapter Test Case Definition with Code on page 47 and in chapter Test
Case Definition with Flow Charts on page 51 and in chapter TestCase Definition with
Statecharts on page 54, pre-defined assertion macros are used to get results from a test
case execution.

TestConductor defines several assertion macros (C/C++) listed below. Each macro might
have one up to four arguments with the following notation:

n = Name of the assertion (String, e.g. „Check 1“)
e, e1, e2 = Boolean Expression (e.g. i != 23)
p = text of message printed in the sequence diagram
sd_instance_name = Reference to the instance name of the sequence diagram
msgid = Reference to the message id of a message in the sequence diagram

• RTC_ASSERT (e)
Assertion with default name e. The assertion is PASSED, if the result of the
boolean expression is TRUE (e!=0), otherwise the assertion FAILED.

• RTC_ASSERT_FATAL (e)
Assertion with default name e. The assertion is PASSED, if the result of the
boolean expression is TRUE (e!=0), otherwise the assertion FAILED. If it is
failed, the test case is aborted immediately without executing further assertions.

• RTC_ASSERT_NAME (n, e)
Named assertion. The user can define the name of the assertion within the
argument n. The assertion is PASSED, if the result of the boolean expression is
TRUE (e!=0), otherwise the assertion FAILED.

• RTC_ASSERT_NAME _FATAL(n, e)
Named fatal assertion. The user can define the name of the assertion within the
argument n. The assertion is PASSED, if the result of the boolean expression is
TRUE (e!=0), otherwise the assertion FAILED. If it is failed, the test case is
aborted immediately without executing further assertions.

• RTC_ASSERT_SD (sd_instance_name, msgid, e)
Assertion that can be used within a sequence diagram. If such an assertion is used
in e.g. a driver operation or a stub operation, and sd_instance_name refers to
a sequence diagram instance, and msgid refers to a message id of a message in
the sequence diagram of the sequence diagram instance, then the assertion is
executed and attached to the specified message.

• RTC_ASSERT_SD_NAME (sd_instance_name, msgid, p, e)
Similar to RTC_ASSERT_SD. The user has to define the string argument p, which

251

will be concatenated with the result of the assert macro (PASSED, FAILED etc.)
and printed as result message, e.g. “Check of return value failed.”

• RTC_ASSERT_TRUE (n, e)
This assertion is PASSED, if e == TRUE. Otherwise the result of the assertion is
FAILED.

• RTC_ASSERT_FALSE (n, e)
This assertion is PASSED, if e == FALSE. Otherwise the result of the assertion
is FAILED.

• RTC_ASSERT_EQUAL (n, e1, e2)
This assertion is PASSED, if e1 == e2. Otherwise the result of the assertion is
FAILED.

• RTC_ASSERT_NOT_EQUAL (n, e1, e2)
This assertion is PASSED, if e1 != e2. Otherwise the result of the assertion is
FAILED.

• RTC_ASSERT_PTR_EQUAL (n, e1, e2)
This assertion is PASSED, if pointer e1 and pointer e2 are equal (e1 == e2).
Otherwise the result of the assertion is FAILED.

• RTC_ASSERT_PTR_NOT_EQUAL (n, e1, e2)
This assertion is PASSED, if pointer e1 and pointer e2 not equal (e1 != e2).
Otherwise the result of the assertion is FAILED.

• RTC_ASSERT_PTR_NULL (n, e1)
This assertion is PASSED, if the pointer e1 is NULL. Otherwise the result of the
assertion is FAILED.

• RTC_ASSERT_PTR_NOT_NULL (n, e1)
This assertion is PASSED, if the pointer is not NULL. Otherwise the result of the
assertion is FAILED.

• RTC_ASSERT_CPTRSTRING_EQUAL (n, e1, e2)
This assertion is PASSED, if the string compare is equal (strcmp(e1,e2) ==
0). Otherwise the result of the assertion is FAILED.

• RTC_ASSERT_CPTRSTRING_NOT_EQUAL (n, e1, e2)
This assertion is PASSED, if the string compare is not equal
(strcmp(e1,e2) != 0). Otherwise the result of the assertion is FAILED.

• RTC_ASSERT_STRING_EQUAL (n, e1, e2)
This assertion is PASSED, if the comparison of the strings e1 and e2 is equal (e1
== e2). Otherwise the result of the assertion is FAILED.

• RTC_ASSERT_STRING_NOT_EQUAL (n, e1, e2)
This assertion is PASSED, if the comparison of the strings e1 and e2 is not equal
(e1 != e2). Otherwise the result of the assertion is FAILED.

For Java, TestConductor defines several assertion methods in the class TestConductor. The
following methods are available for Java (the semantics is analogues to the C/C++
macros):

• public static void ASSERT_NAME(String n, boolean p)

252

• public static void ASSERT_SD(String s, String n, boolean p)

• public static void ASSERT_SD_NAME(String s, String n, String m, boolean p)

• public static void ASSERT(boolean e)

• public static void ASSERT_TRUE(String n, boolean e)

• public static void ASSERT_FALSE(String n, boolean e)

• public static void ASSERT_EQUAL(String n, boolean e1, boolean e2)

• public static void ASSERT_NOT_EQUAL(String n, boolean e1, boolean e2)

• public static void ASSERT_STRING_EQUAL(String n, String e1, String e2)

• public static void ASSERT_STRING_NOT_EQUAL(String n, String e1, String
e2)

For Ada, TestConductor defines several assertion procedures in the package
TestConductor. The following procedures are available for Ada (the semantics is
analogues to the C/C++ macros):

• procedure ASSERT_NAME(n : in String; p : in BOOLEAN; sfile : String := File;
iline : integer := Line);

• procedure ASSERT_NAME_FATAL(n : in String; p : in BOOLEAN; sfile : String
:= File; iline : integer := Line);

• procedure ASSERT_SD(s : in String; n : in String; p : in BOOLEAN; sfile : String
:= File; iline : integer := Line);

• procedure ASSERT_SD_NAME(s : in String; n : in String; m : in String; p: in
BOOLEAN; sfile : String := File; iline : integer := Line);

• procedure ASSERT(e : in BOOLEAN; sfile : String := File; iline : integer :=
Line);

• procedure ASSERT_TRUE(n : in String; e : in boolean; sfile : String := File;
iline : integer := Line);

• procedure ASSERT_FALSE(n : in String; e : in boolean; sfile : String := File;
iline : integer := Line);

• procedure ASSERT_EQUAL(n : in String; e1 : in boolean; e2 : in boolean; sfile :
String := File; iline : integer := Line);

• procedure ASSERT_NOT_EQUAL(n : in String; e1 : in boolean; e2 : in boolean;
sfile : String := File; iline : integer := Line);

• procedure ASSERT_STRING_EQUAL(n : in String; e1 : in String; e2 : in String;
sfile : String := File; iline : integer := Line);

• procedure ASSERT_STRING_NOT_EQUAL(n : in String; e1 : in String; e2 : in
String; sfile : String := File; iline : integer := Line);

253

Using IntelliVisor for TestConductor Assert Macros
TestConductor supports the usage of the IntelliVisor functionality of Rhapsody. To be able
to use this for the defined TestConductor Assert Macros, you have to prepare Rhapsody’s
site.prp file. Please do the following steps:

• Close Rhapsody if it is open.

• Copy the file rtc.prp from the ..\TestConductor folder to the ..\Share\Properties
folder of your Rhapsody installation.

• Open the site.prp file and add Include "rtc.prp".

• Save the site.prp file and open Rhapsody.

Using Ctrl+Space in a code based test case definition (Flowchart TestCase or Code
TestCase) the known IntelliVisor list box opens. With the modifications above you are
able to select one of the defined TestConductor Assert Macros. Selecting one of the
macros also shows a hint that gives you information about the parameters of the macro.

A double-click on the macro adds this to the code. For example you have chosen the
RTC_ASSERT_NAME macro the following code will be added:

Now you have to replace the string “assertion name” and the expression to that expression
you want to check.

254

Syntax for Activation Conditions / Condition Marks
TestConductor uses the following scheme of event activation conditions:

ObjectName1->eventAction(ObjectName2,eventName)

The scheme of a state activation condition can be represented as follows:

ObjectName->stateAction(stateName)

The scheme of a method activation condition is as follows:

ObjectName1->methodAction(ObjectName2,methodName)

In this syntax:

• eventAction is EventSent or EventReceived

• stateAction is StateEntered, StateExited or IsIn

• methodAction is MethodCalled or MethodReturned

Note: The syntax of the activation condition is case sensitive. TestConductor checks
only the syntax and not for static semantics.

For example:

• PBX[0]->itsLine[0]->EventSent(PBX[0]-
>itsTelephone[0],evRing())
This activation condition is TRUE at the moment when object PBX[0]-
>itsLine[0] sends the event evRing() to object PBX[0]->
itsTelephone[0]. In a sequence diagram, this corresponds to the origin of the
message arrow.

• PBX[0]->itsLine[0]->EventReceived(PBX[0]->
itsTelephone[0],evDialTone())
This activation condition is TRUE at the moment when the object
PBX[0]->itsTelephone[0] receives the event evDialTone() from
object PBX[0]->itsLine[0]. In a sequence diagram, this corresponds to the
end point of the message arrow.

• line->MethodCalled(callRouter,OpenConnection())
The activation condition is TRUE at the moment when the line object calls the
OpenConnection() method of the callRouter object.

• line->MethodReturned(callRouter,OpenConnection())
The activation condition is TRUE at the moment when the callRouter object
returns the OpenConnection() operation call to the line object.

• telephone->StateEntered(ROOT.Ready.Calling)
The activation condition is TRUE at the moment when object telephone enters its
“Calling” state chart state.

255

• telephone->StateExited(ROOT.Ready.Calling)
The activation condition is TRUE at the moment when the telephone object exits
its “Calling” state chart state.

• telephone->IsIn(ROOT.Ready.Calling)
The activation condition is TRUE as long as the telephone object is in its
“Calling” state chart state.

Note: You must specify the full state chart state name (the state path), e.g.
“ROOT.Ready.Calling.” You can combine these expressions with AND, OR, and
NOT.

For example:

(NOT (callersLine->EventReceived(caller,evRing()))) OR
(caller->StateEntered(ROOT.Ready.Idle))

Do not use two different event conditions with the conjunction AND as a combined
activation condition. Such expressions can never have the value TRUE, because
TestConductor and the Rhapsody animation tool work sequentially. At most, one event can
be sent or received at every point in time. In addition, be careful when combining several
state conditions by the conjunction AND: every object can stay in one “basic” state at every
point in time, if its state chart does not contain a hierarchical state with orthogonal
components. In addition, you can use the name ENV as an object name to specify event
sending to and receiving from the system’s environment.

Activation conditions use the following shortcuts:

• ES for EventSent; ER for EventReceived

• MC for MethodCalled; MR for MethodReturned

• SE for StateEntered; SX for StateExited; II for IsIn

256

TestConductor Messages

Errors/Warnings regarding messages in Sequence Diagrams
Some sequence diagram features are not supported by TestConductor. They will be
ignored and a warning comes up, but the test will be executed.

• Timeouts will be ignored.

• Cancelled timeouts will be ignored.

• Reply messages will be ignored.

• Execution occurrences will be ignored.

• Rhapsody in C initializers will be ignored.

• Rhapsody in C++/ Rhapsody in Java constructors will be ignored.

• Rhapsody in C cleanup operations will be ignored.

• Rhapsody in C++/ Rhapsody in Java destructors will be ignored.

• <name> : Unspecified messages will be ignored.

• <name> : Unrealized messages to an internal instance will be ignored.

• Messages with wrong syntax will also be ignored in test execution:

• Condition : <name> is not a valid expression.

• Time interval with a lower bound of 0 will be ignored.

• Time intervals are only supported on system border. Other time intervals will be
ignored.

• <name> : Wrong syntax of time interval. Time interval will be ignored.

• Time intervals are only allowed for driver or black box tests. In monitor tests time
intervals will be ignored.

• <name> : Method not supported by method broker. Remove message from
sequence diagram. (only Rhapsody in Java)

Errors Regarding Complete Sequence Diagrams and Test (test will
not be executed)

• In a black box test only messages from or to the system border are used for the test.
If a sequence diagram only has internal or unsupported messages, a black box test
will not be executed.
SD has only internal Messages or unsupported elements.
Black-Box test will not be executed.

• If a sequence diagram is empty or only has unsupported messages, the test will not
be executed
SD contains only unsupported elements. Compilation
aborted. SD without any constructs is not supported.

• In some cases executing a test with a sequence diagram which hat more than 2000
messages leads to a crash due to a small stack size. In this case, please refer to the
release notes how to increase the stack size of your system.
Due to the actual size of this SD, test execution can

257

lead to a crash. In such a case, please contact support
to get a patch or refer to the release notes and use
the mentioned workaround.

• If two messages of a sequence diagram start/end at the same point TestConductor
can not get correct information about the messages so the compilation fails. If this
happens, make sure that there is only one message starting/ending on each message
point.
TEST: <name>
Sequence Diagram: <name>
ERROR: Compilation error - Test will not be executed.
This error can have different reasons. Known reasons
are:
- Sequence Diagram contains a time interval beginning
or ending on other message points.
- Sequence Diagram contains unspecified messages.

• If the activation condition of a test has the wrong syntax the test will not be
executed.
TEST: <name>
Sequence Diagram: <name>
ERROR: Syntax error in activation condition
<ActivationCondition>

• Another message arrow detected between start point and end point of operation.
TEST: <name>
Sequence Diagram: <name>
Another message arrow detected between start point and
end point of
Operation <name>.
This is not supported by TestConductor.
To execute the test, please move start/end points of
other messages above or below the message arrow of
<name>.

• If there is an unspecified message in the specification sequence diagram
<Message_name>: Unrealized Messages to an internal
instance will be ignored.

• If there is an unrealized message in the specification sequence diagram
<Message_name>: Messages with Stereotype <unrealized>
will be ignored.

• If the specification sequence diagram has an unspecified class
TEST: <test_name>
Sequence Diagram: <name>
Class of Instance <class_name> is unspecified. Test
will not be executed.

258

Restrictions
TestConductor supports Rhapsody in C/C++/Java/Ada with its existing and with its new
features. The most important limitations are:

• Assertion based testing mode is only supported for RhapsodyC and RhapsodyC++.

• Code coverage computation with TestConductor is only supported with assertion
based testing mode for RhapsodyC and RhapsodyC++.

• Code or flow chart test cases are only supported for Rhapsody in C/C++.

• Black box production code test case execution only for Rhapsody in C++ and C.

• TestConductor does not support C#.

Limitations of design elements (sequence diagrams)
Currently, TestConductor does not support the following sequence diagram features:

• Create arrow

• Destroy arrow

• Reply message

• Timeout

• Cancelled timeouts

• Constraints

• Language for condition marks

Condition marks must obey the same syntax as activation conditions. Currently, simple
expressions with equality or inequality are not yet allowed in activation conditions and
condition marks.

Note: TestConductor will ignore condition marks during test execution when the syntax
of the condition mark is not valid.

If you use these unsupported features in a sequence diagram, TestConductor ignores them
during test execution.

Functional Limitations
All TestConductor features are available for Rhapsody in C++, C, Java and Ada. Rhapsody
Automatic Test Generation (ATG) is only available for Rhapsody in C++. For
TestConductor, the most important limitations are:

• Flow chart test cases are only supported for Rhapsody in C/C++.

• Black box production code test case execution only for Rhapsody in C/C++.

Beside the listed important limitation there are some other know limitations:

• Obsolete profiles (ATGProfile, TestingProfile_CPP, TestingProfile_C,
TestingProfile_Java, TestingProfile_Ada) must be deleted from models manually.

• Only virtual operations can be stubbed.

259

• When using animation based testing mode, TestConductor cannot generate stubs
for triggered operations.

• TestConductor cannot generate stubs, if the signature of overwritten operations in
an inheritance hierarchy do not syntactically match to the related operation in the
base class (for instance, due to different typedef-types to the same base type)

• The auto-generated code for driver- or stub-operations could be semantically
incorrect, if non-default values for the properties CPP_CG::{Class,
Type}::{In, Out, InOut} are used. Note that incorrectly generated code
could be overwritten by setting the tag RTC_DriverCallCode, RTCDriverInitCode
respectively RTC_StubBodyCode.

• If a TestComponent instance is linked to a SUT using a qualified association
relation, Rhapsody does not generate code to implement the link. TestConductor
can not generate driver operations for messages, which use such a link.

• Building SUT for black-box testing requires an animation property change in the
design model.

• Auto created operations are not animated and cannot be used in test cases: due to a
limitation in the Rhapsody animation, auto generated operations like getter/setter
for class attributes are not animated during execution, they do not appear in
animated sequence diagrams and observers don't get notifications about these
messages (even if the property CG:CGGeneral:GeneratedCodeInBrowser is
set to true).

260

	Contents
	Document Structure
	Contacting IBM® Rational® Software Support
	Conventions

	Introduction
	Rhapsody UML Testing Profile
	Structure Overview
	Adding the Testing Profile automatically
	Adding the Testing Profile manually

	Functional Specification
	UML Testing Profile (UML20TP) Package
	TestArchitecture Package
	TestBehavior Package

	TestConductor (RTC) Package
	TestArchitecture Package
	TestBehavior Package
	TestDocumentation Package

	Automatic Test Generation (ATG) Package

	Using the Testing Profile
	Refining Testing Profile Stereotypes

	Model-based Unit Test Definition
	Automatic Test Architecture Generation
	Using Classes
	Using Objects
	Using Files (Modules)
	Using Parts
	TestArchitectures with multiple SUT classes or objects
	Updating TestArchitectures
	Up-to-date check for TestArchitectures
	TestArchitecures for MicroC Models
	TestArchitecures for Code centric Models
	Unit testing of AUTOSAR Software Components
	TestConductor.h, TestConductor_C.h and TestConductor_C.c, TestConductor.jar, TestConductor.ads and TestConductor.adb
	Generate and Build the Test Context

	Test Case Definition
	Test Case Definition with Code
	Define a Code Test Case
	Execute a Code Test Case
	Failure Analysis in CodeTest Cases
	Testing reactive behavior with Code Test Cases

	Test Case Definition with Flow Charts
	Define a Flow Chart Test Case
	Execute a Flow Chart Test Case
	Failure Analysis in Flow Chart Test Cases
	Testing reactive behavior with Flow Chart Test Cases

	TestCase Definition with Statecharts
	Define a Statechart Test Case
	Execute a Statechart Test Case
	Failure Analysis in Statechart Test Cases

	Test Case Definition with Sequence Diagrams
	Define a Sequence Diagram Test Case
	Execute a Sequence Diagram Test Case
	Failure Analysis in Sequence Diagram Test Cases
	Model Population – Create Driver Operations and Stub Operations

	Creating test cases with the test case wizard
	Creating Sequence Diagram test cases from existing Scenarios using an explicit instance mapping
	Definition of mappings for sequence diagram test case creation from existing scenarios

	Test Execution
	Overview
	Test Configuration
	Test Configuration for animation based testing
	White Box Testing
	Build Test Context (White Box)

	Production Code (Black Box) Testing
	Build Test Context (Black Box for animation based testing mode)

	Test Case Execution
	Test Execution Dialog for code, flow chart, startechart based tests
	Test Execution Dialog
	Test Information
	Controlling test case execution

	Test Execution Dialog for sequence diagram based tests
	Test Execution Dialog
	Test Information
	Displaying Test Results by witness scenarios
	Automatically adding witness scenarios to the model for failed SDInstances

	Abort Test Execution
	Execution Timeout
	Execution timeout for animation based testing

	Test Execution Report
	Debugging test cases
	Using breaks and tracer commands during debugging

	Test Context Execution
	Starting Test Execution
	Stopping Test Execution
	Execution Timeout
	Ordering of Test Cases
	Test Execution Report

	Test Package Execution
	Starting Test Execution
	Stopping Execution
	Execution Timeout
	Test Execution Report

	Assertion based testing mode
	Choosing between testing modes
	Migrating animation based test architecture to assertion based test architecture
	Automatical Migration of animation based TestArchitectures to assertion based Testing mode
	Differences between animation and assertion based testing mode

	Computing Model Coverage during Test Execution
	Computing Model Coverage for single Test Cases
	Coverage Items
	Coverage Measurement
	Traceability of Coverage Items
	Choosing the Coverage Kind for Model Coverage

	Computing cumulative Model Coverage for TestContexts
	Computing cumulative Model Coverage for TestPackages

	Computing Requirement Coverage
	Computing Requirement Coverage for Test Cases and TestContexts
	Transitivity of Dependencies (Refinement of model elements and requirements)

	Computing Code Coverage
	Integration with CUnit/CppUnit Framework
	Stereotypes for CUnit integration
	Stereotypes for CppUnit integration
	Test Definition for CUnit/CppUnit
	Using Statechart Test Cases with CppUnit

	Command Line Execution
	Command Line Syntax for rhapsody.exe
	Command Line Syntax for rhapsodycl.exe
	Test Execution Report

	Test Case Execution on Targets
	Driving Operations Calls
	Driving Operation Calls

	Test Management
	Managing Test Data
	Linking Test Case to Requirements

	TestConductor Dialog
	TestConductor Settings
	Sequence Diagram Properties
	General Properties
	Test Context Properties
	Test Case Properties

	Generating Test Reports with Rhapsody ReporterPLUS
	Executing the Test Report
	Using the HTML Test Report
	Using the Test Requirement Coverage Report
	Customizing the Test Report

	Generating Test Reports with Rational Publishing Engine
	Creating the Test Report
	Test Requirement Coverage Report
	Creating Report Templates

	Using the TestConductor API
	Available TestConductor API Commands
	Defining Callbacks for TestConductor functions

	Advanced Test Definition
	Specifying Requirements with Sequence Diagrams
	Graphical Feature Support
	Synchronous and Asynchronous Messages
	Linear and Partial Order

	Parameters
	Defining Parameters
	Parameter Mapping

	Using Time Interval for Delay Driving from Environment and TestComponents
	Activation Conditions
	Defining an Activation Condition
	Condition Marks
	Preconditions (for SysML/Harmony)
	Use Cases of Activation Conditions

	Specifying Return Values and Output Values
	Ignoring Unrealized Messages
	Reference Sequence Diagram
	Life Line and Part Decomposition

	Advanced Sequence Diagram Test Definition
	Defining a Sequence Diagram Test
	Creating a Sequence Diagram Test Case
	Adding a New Sequence Diagram Instance
	Mapping Parameters
	Don't care values, Ranges, and Tolerances
	Exiting the Define Test Dialog Box

	Use Cases of Sequence Diagram Test Cases
	Simple Monitor
	Automatic Driver
	Ordered SD Instances
	Driver-Assisted Monitor
	Choosing Between Alternatives in a Cycle

	User Defined Driving Operation Calls
	RTC_DriverInitCode and RTC_DriverInitCodeAdditional
	RTC_DriverCallCode and RTC_DriverCallCodeAdditional
	Clean TestComponent
	Clean TestPackage
	Deleting User Defined Driver Operation Calls

	User Defined Stub Operation Calls
	RTC_StubBodyCode
	Clean TestComponent
	Clean TestPackage
	Deleting User Defined Stub Operation Calls

	Black-Box Testing of External Files and Libraries
	Test Packages

	Support for interfacing Files in C using <<CInterfaceFile>> Stereotype
	Using Serialize/Unserialize Functions for User Defined Types
	Using auto generated serialization /unserialization functions
	Using manually defined serialization /unserialization functions

	Failure Analysis
	Failure Reporting
	Event sending out-of-order
	Event sending in-order, but parameter values do not match
	Event sending in-order, but parameter values not in range
	Event consumption out-of-order
	Event consumption in-order, but parameter values do not match
	Event consumption in-order, but parameter values not in range
	Operation call out-of-order
	Operation call in-order, but parameter values do not match
	Operation call in-order, but parameter values not in range
	Operation call returned - Return value does not match
	Operation call returned - Out Parameter values do not match
	Operation call returned - Out Parameter values not in range
	DataFlow Message - Value does not match
	DataFlow Message - Value not in range
	DataFlow Message out of order
	Assertion failed

	Using TestConductor from Eclipse
	Using TestConductor from Rational Quality Manager
	TestConductor Rhapsody Plugins
	TestConductor Merge Coverage Reports Plugin
	Merging model coverage reports
	Merging code coverage reports
	Merging requirement coverage reports

	TestConductor RQM Plugin
	TestConductor Check Model Plugin

	Appendix
	TestConductor Assert Macros (C/C++), TestConductor assert methods (Java), TestConductor assert functions (Ada)
	Using IntelliVisor for TestConductor Assert Macros

	Syntax for Activation Conditions / Condition Marks
	TestConductor Messages
	Errors/Warnings regarding messages in Sequence Diagrams
	Errors Regarding Complete Sequence Diagrams and Test (test will not be executed)

	Restrictions
	Limitations of design elements (sequence diagrams)
	Functional Limitations

