Rhapsody

IBM® Rational® Rhapsody® TestConductor Add On

User Guide

Rhapsody®

IBM® Rational® Rhapsody®
TestConductor Add On

User Guide

Release 2.8.2

4|||

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated
into any human or computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written permission of the copyright owner,
BTC Embedded Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems
AG assumes no responsibility for any errors which may appear herein. No warranties, either expressed

or implied, are made regarding Rhapsody software including documentation and its fitness for any
particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody® Automatic Test Generation Add On, and
IBM® Rational® Rhapsody® TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of
their respective owners.

© Copyright 2000-2019 BTC Embedded Systems AG. All rights reserved.

Contents

Content

Contents 4
DOCUMENT STIUCEUTC.ccceeeeeereeeeeeeeeerereeereeeeesesesesesssesesesssesssssssssessassnsssnses 9
Contacting IBM®™ Rational® SOftware SUPPOTL.........c.ccvcvieueiereerieieeeeieteeteeeee et eneaeas 10
COMVEIITIONS. ..ottt ee aeeeeeeeeeeeeeeesessasaeaaaa e aeaseaaeseeeeeeeeeesesseessaseaannnnnnanseas 11
| B 108 g1 L) T 5 11) 1 DO UU PP 12
Rhapsody UML Testing Profile..........coccierveicsrninssencsssencsssencssnnssssnsssssnssssasssssassssssssssssssasssses 16
SETUCTUTE O VEIVIEWoeeieeeeeieeeeeeee ettt e e e e e e e e e e e e e ettt e e e eaeeeseseesaeaesesessasaesesseeseeeesans 16
Adding the Testing Profile automatiCally..........cccccveriierciieriiienieerieee et 17
Adding the Testing Profile manually..........ccccocvveriiiiiiiiiie e 19
FUnctional SPECIfiCAtION.eeviiiiiieiiieeiee ettt esieerte et et e st ee st e e seseesseessaeastaesnseesnseesnseeesnsnssseeas 20
UML Testing Profile (UML20TP) Package..........cccueeiuieiiiiiiierieenie e sve e esiae e enes 20
TeStATchitecture Package........c.uviivuiiiiiiiees ettt s eeraae e 21
TeStBEhavIior PACKAZE.ccccviiiiieiie ettt ettt ettt e s e e v e ibe e taeesreesabaessbeeessnraeeeanes 21
TestConductor (RTC) PaCKaZE........ecovieiiieiieeiie ettt ettt ee e e e eanneeee s 23
TestATChitecture PaCKAZE.ccueiiiiiiiieiii ettt et saeee e s 23
TeStBEhavIior PACKAZE.ccccviiiiieie ettt ettt ettt sve e v e ebeetaeesraesabaessseesssnraeesaans 27
TestDocumentation PaCKa@e...........cccvveicviiriiiiii ittt sr e sr e e e e e sneraeeeeans 30
Automatic Test Generation (ATG) Package........ccooeieiieriiiiiiiiiee e 30
Using the Testing Profile..........cccviiiieiiiiiieie ettt st e s e sbaesbe e e e snnraeeessnsrneeas 31
Refining Testing Profile SterEOtyPeS......ccciiriiiiriieriiieiieeieesieerreesteesre e eitesteeserraeessnsrraeeessnsnes 31
Model-based Unit Test DefiNitioN.......cccccrrrererererrrerersrcssssssssssssssssessssssssssssssssssscsssssssssssessssases 32
Automatic Test ArChItECTUIE GENEIATION.ueieeeeeeieeeeiieieeeeeeeeee e et e e e e e et et e e eeeeeseeeeeeeesessseaaanas 33
USINE ClaSSES. .. vveiuveerirreierierreesiteeteeeteesteessseessseessseessseassaessseessseessseessseessssensseassesassesssssesessssseeens 35
USINE ODJECLS. ... eeeutieiiieetie et esieeete et e et e et e s bt estteestteesseeesseesnseessseesnseasseassaeenseesnseessseessseessnnssns 38
USING FI1eS (IMOAUIES)uviieiiiiieiiie ettt etee ettt et e ettt e e tae e e e e e stbeeesstaeaesssaeesnssaeesssseessnsssnnsns 39
USINE PAIS.....iiiiiiiiieciie ettt e e e ettt e e ettt e et eesebeeessssaeesssaeesssseessseeesssseeensssaaseessennnnnes 40
TestArchitectures with multiple SUT classes OF ODJECtS........cc.eerieriirriirienienienierieeiceeeee e 40
Updating TeStATCRItECIUTES.eeuvtruieriieitietieieeteete sttt sttt sttt ettt sbae st esiaee s 40
Up-to-date check for TeStATCHITECIUIES. .. .cvviivieeiiecrieciieere e e eteeree e e ereeesreesebeesebeeereeeesnenns 43
TestArchitecures fOr MICTOC IMOAEIS......coooveeeeeeeeeeeeeeeee ettt e e e e e e e e e e eaees 43
TestArchitecures for Code CENIIC MOAEIS.......cooeiiiiiiiiieiiieeeeeeeee et e e e 44
Unit testing of AUTOSAR Software COmMPONENLS........cc.cieuiriiiirriiieiiienieesie et eiteeeeeiiee e e 45

TestConductor.h, TestConductor C.h and TestConductor C.c, TestConductor.jar,
TestConductor.ads and TestConduCtOr.adb..........ooovveuieiiiiiiiiieeeeeeee e eeeees 45
Generate and Build the TeSt CONtEXT......uuuuuuuuiiieeeeeeeeeeeeeeeeteeeeeeee e e e e e e e et e et eeeeeeeesan e eeanans 46
Test CaSE DETINILION.ccviiitieeiiieiie ettt ettt et et et et e et e sbeeesteesaseessseessseesseeennssaeesennssneesesnns 47
Test Case Definition With COE.........oooviiiiiiiiieeee ettt e e e e e e eeaaaas 47
DETINE 8 COAE TESE CASE...ueveeeeeeeeeeeeeeeeee ettt e e e e e e e e e e seesaeeaee s aaeaeeeeaaeeeeeeereennans 47
EXECULE @ COAE TESE CASE.coeeeeeeeeeeeeeeeeee e e e e e e e et e e e e e e e e e eaeeeeeeaeeeenans 49
Failure Analysis in COdeTest Cases........ueeruirrriirriieriienieeriie ettt eriteeiee et e steeseeeeeessnbeeeeeesnneeas 49

Testing reactive behavior with Code Test Cases.......cccvvvcvierciieriieriierieereeesrieeeeesereeeesseneens 50

Test Case Definition With FIOW Charts...........cooiiiiiiiiiiiiiieeeeeee e 51
Define a FIow Chart Test Case.......c..oeiiiiiiiiiiieiiie ettt ettt ettt 51
Execute @ FIOW Chart Test Case.......cocuieiuiiiiiiiiieiiieeiie ettt ettt st a e 52
Failure Analysis in FIow Chart TeSt Cases..........cccvereiierciieriiienieenieeniieesieesieesseesseesneeessnnnnns 53
Testing reactive behavior with Flow Chart Test Cases.........cocevvereeneinierieniienieneenee e 53

TestCase Definition with StateCharts...........ceevieiieiieeeeee e 54
Define a Statechart TeSt Case.......ecueereeriieiiieieeieeierte ettt et seee e eneee e e 55
Execute a StateChart TSt CaSe.......cevuiiriieiiieiiiieiee ettt ete ettt ettt e et esete e esnae e neeeee s 57
Failure Analysis in Statechart TeSt Cases.........cecueeriieriiiiiienieerie ettt e e 58

Test Case Definition with Sequence DIagrams............cceevueereriercrieniireniieenireeeesieesreesreesseeseneeess 58
Define a Sequence Diagram TeSt CasC........ccccuverveeriieriiieciieeieesreesreesreesseessseesseessseessessnsnsns 58
Execute a Sequence Diagram Test Case.......c.eevueeriierieerieiiieeiie ettt ettt 61
Failure Analysis in Sequence Diagram Test Cases..........ccceeeeeuvieeiriieiriereeiieeeiieeeeieeeeeeeeeeens 62
Model Population — Create Driver Operations and Stub Operations............ccceeeveerveereveeeennnnn 62

Creating test cases with the test Case WiZard..........cceevueeiiiieriiieniiierie et e e 68

Creating Sequence Diagram test cases from existing Scenarios using an explicit instance

F00E00) 011 0o UUPPRROt 72
Definition of mappings for sequence diagram test case creation from existing scenarios........ 73

TeSt EXCCULION..cuueeitiiiiiiteiineitensenisnensnnssaessnesssesssnssssesssassssessssssssesssassssassssessassssassssassssassnss 75
L0) 5 T 2SS 75
TSt CONTIGUIATION.veiuiieieiieceiieite ettt e etee et eesb e e s b e estbe e treessaeesseessseessseessseessseessseassessssensessssenesnnes 75

Test Configuration for animation based tESHING..........ccvevvvieriiieriieeriie e ereerreeere e eeree e e eerreee s 76

WHhite BOX TESTING. .. eeueeetieiiieeiie ettt ettt ettt ettt e s e et e et e e bt e st esateesnbeeenteesseeenseeeas 77
Build Test Context (Whit€ BOX)......ccccuiiiiiiiiiiiiiceiiie et ettt et e e are e e eaveeeseanes 78

Production Code (Black BOX) TESLING.......ccccevieeciieiiiiriieriierieeieeeieeeieesereesereeseseessneessnaeeesensnnes 79
Build Test Context (Black Box for animation based testing mode)...........cccvevevvervrenvennieennnnen. 79

Test CaSE EXCCULION.eiutiiiiiiieitieteete ettt ettt et ettt sat e sttt e st e e eabteeeaneee e 81

Test Execution Dialog for code, flow chart, startechart based tests..........ccccvvevveerieerieeeciereennnne, 81
Test EXECUtION DIAL0G........ccciiiiiiiiiciiie ettt et e e rree e et e e stb e e e s taeeesbaeeennsaaeaaeeeas 82
Test INFOIMAtION.eitiiiiiieti ettt et ettt e st e e e e bee e 82
Controlling teSt CASE EXECULIOM. ...ccuuerutiriieriiertieteete ettt ettt ete st sbt bt et e e sabeeesabeeenabeees 82

Test Execution Dialog for sequence diagram based testS..........cceerieriiieriiienieeniiiiee e 82
Test EXECULION DIALOZ.......uviiiiiiiieiiieieeieeetee et e et e sv e e v e estbeestaeessaessseessseessseesssesssseasssaeesnnes 83
Test INTOTTNALION.eieiitietieie ettt ettt sttt ettt et eeneeseeesneenneeneee e 83
Displaying Test Results by Withess SCENAIIS.ccuuierueeriieerieerieesieertteertteesieeeeeesireeeeesneeeeas 84
Automatically adding witness scenarios to the model for failed SDInstances..............ccc.ce..... 86

ADOTE TESt EXCCULION.eeitiiiiieiieieie ettt ettt ettt st e et esb et et eaeeeneeeen 87

EXECULION TIMEOUL.eutiiitiiiiieiiiitiettete ettt ettt ettt ettt et et e bt e bt et et e e s steeenteeeneee 87
Execution timeout for animation based teStiNG..........cccvreiriieeriiieeiiiee e e e 87

Test EXECULION REPOTL.......ciiiiiiiiiiie ittt ettt ettt e et e e s be e e et e e e ereeessasaeessesaeeeessnsssnnnneees 87

DEbUZEING tESE CASCS...veeuvieerieeiiieiiieiieerteeiteettesteeste e sttt este e saeesseesnseesaseessseessseensseansneeessssseeens &9
Using breaks and tracer commands during debugging.............cceoveveeneenennienienienceneenieeenee 90

Test CoNtEXt EXECULION.eiiiiiiiieiit ettt ettt et ettt s bt esteesateesateessaeeteesnseesnseesanns 92

Starting TeSt EXECULION.ciiiuiiiiieeiieiieesiie ettt ettt et ee e te e st e sat e e s st e e e eenstaeeeesnnnees 92

StOPPING TeSt EXCCULION.iiiiiiiiiieiieiie ettt et et e et et e sb e e s b e etbeestaeestaesssaessseessseesssesssnses 93

EXECULION TIMEOUL.eueieiieeiiieiieitiet ettt ettt ettt ettt et et e e st e sbeesbe e bt enteeenteeeneeeennee 93

Ordering OF TSt CaSES. . .cuueiiutieetieiieeitie ettt te et et et e st e sttt esbteebeeebeesateesaeeesneeesseeeeeeannreeeesanns 93

Test EXECULION REPOTt......oiiiiiiiiiiiie ettt e e e e et e e e tbe e e eebaeesnaseeeeessnnessssseees 94

Test PaCKage EXECULION. ...c..uiiitiiiiiiitie ettt ettt e sb e et e et e s be e sate e e eemneeeaeeans 95

Starting TeSt EXECULION.ccuviiiiiiieeciieeecite et ee et e et e e stte e e s taeeetbeeeetaeeeeabaeeeeeeesnnssssssnesaaaaeeens 95

StOPPING EXCCULION.ueiiiiiiiieeiiecieerie ettt et e st e reesaeeteeesteessbeessseessseessseassaeassaessssseeesssssnses 96

EXECULION TIMEOUL. ...ceutieiieiiiiiiieiiteit ettt ettt ettt st at e s bt e bt et et e e e bbeeenteeeneee 96
Test EXECULION REPOTt.......iiiiiiiiiiiie ettt ettt e et e e tbe e e e ta e e et e e eebeeessasaeeeessnnsssssneees 97
Assertion based teStING MOME.ccuiiiiiiiiieiiee ettt ettt eat e st e st esieeeeaes 99
Choosing between teStiNG MOAES.eiitiiiiieiiieiieeie ettt ettt e s ee e e e eabeeeee s 99
Migrating animation based test architecture to assertion based test architecture........................ 100
Automatical Migration of animation based TestArchitectures to assertion based Testing mode.102
Differences between animation and assertion based testing mode............ccceevveeeieriiieeeennnnenn.. 102
Computing Model Coverage during Test EXECULION........c.ceecuirriiieiiiierieeiie et e e 103
Computing Model Coverage for single Test Cases.........ccuveriieriieiieeiieeiiienieesie et eiee e 103
COVETAZE TEEIMS. ...eeeueiieeeiieeeeiiee et e et ettt e et e e s bt eesnteeeesstaeesssseeesssseeeansaeesssaeaeseesennnnssnnnnes 105
COVETage MEASUTEIMENL..........uiiiiiieeeeiieeeiieeeeiteeeeteeeeseteeestteeesnsaeesssseeessseessnsaeesanseeesnnseessnnns 106
Traceability of COVerage IteImS.coiuiiiiiiiiiiie et 106
Choosing the Coverage Kind for Model Coverage............ccveeeeviieiiieeeiiiieeeeiiiiieeeeeeeeeeeeaens 107
Computing cumulative Model Coverage for TestCONtEXtS.........cevvverereercrierieerieerieaieesinneeesenns 108
Computing cumulative Model Coverage for TestPackages..........ccceovvevieeiieiiiieenniiiiee e 110
Computing Requirement COVETAZE.eecuureriieriieriieiieereeeieeeteesteesreesseeessaeesaesnseesnseessseesnsseeeens 111
Computing Requirement Coverage for Test Cases and TestContexts........cccceevveerviveerniieernineennne 111
Transitivity of Dependencies (Refinement of model elements and requirements)...................... 113
CompUting COAe COVETAZE.....cccuvrerurreiireiieetieeteesteestteestteestteettesteesbeesnseesseeassseaaseesaseesnseesseessnns 114
Integration with CUnit/CppUnit Framework..........cccoviriiiiiniiniiiiiececceceec e 114
Stereotypes for CUNIE INEEZIAtION.eiiiieriireitieeitieeiee et et eteestte et ee et esteesieeesseeesaeeebeeeeeeaneee 115
Stereotypes for CppUNit INEEZIratioN.ecvierrrerieeiieeieeeriesreesaresteeeseeeseesseessseessseesssseesssssnns 116
Test Definition for CUNIt/CPPUNIL.......ccveirieieiieeiieeiiesieesreeeeerieeeseesseesreessseessseessnesessssseeeens 118
Using Statechart Test Cases With CPppURIt.........c.oociiiiiiiiiiniiiiiiiee e 118
Command Line EXECULION.c.ueiuiiiiiiiiiiieie ittt ettt e e e 120
Command Line Syntax for thapsody.€Xe.......c.ueeevriiiiiiiiiiiieeciee ettt 120
Command Line Syntax for thapsodyCl.eXe........ccovviiiiriiiiiiiieeiie et 122
Test EXECUION REPOTL.....cccuiiiiiiiiieiiieciieeie ettt ettt et stteeateetae s e enenneeesennees 123
Test Case EXECULION ON TAIZELS.ccviiiiciiieeiiiieeeiieeeiteeeeteeesreeessereeeeebeeesstaeessssaeesssssssnsssnaeaeaeeens 123
Driving Operations Calls........cc.uiiieiiierciiie ettt ere e ste e e bt e e streeeetaeesssaeesnsnnssnaeeaaeeens 123
Driving Operation CallS..........c.ccvuieicrieiirieiiieiiierteeseeesreesreesreesreestreessreesseesseessesssessssssseesssssns 123
TeSt MANAZEIMENT....ccoicverricrissrresssssrecsssssssessssssssssssssssess 125
MaANAgING TESt DAta.........ccviiiiiiiiciieiie et eteeee et et e s e e rteesteeesteeebeesebeessbeeseseessseesseesssesssseesssnsnns 125
Linking Test Case t0 REQUITEMENLS.ccviirieeeirieecrierieesreesireeteeeseesreessseessreessseesseessseeesssnses 125
TeStCONAUCLOT DIALOZ......c.uviiiiieiieeiie ettt ettt teebee s b e e ssbeesbeesebeessbeessseasseessseessseessseessnsnses 127
TeStCONAUCTOT SEHNES.veeiutieiiieeitie ettt ettt ettt ettt bt e st e st e sateesaeeebeeenbeeeabeesabeeeenneeeas 128
Sequence DIiagram Properties.........cuvuieiiieierieriiiereeerieeveeeesieesseesreessreeseseessseesssesssessssessnnes 130
(€131 1S3 21 B 20 (00153 4 LTSRS 132
TSt CONEEXE PrOPEITIES.uviiiiiiieieiiie ettt e eiee et e et e et e e ettt eeetbeeesataeeessbaeesessnssssssseaeaaaaeeeanns 137
TSt CaSE PrOPEITICS. ..c.eviieiiiiieeiiieesttee et e e et e e ettt eestteeesereeestbeeesstseeessseeeassseeeassssaeaaaaseessssnsnes 138
Generating Test Reports with Rhapsody ReporterPLUS...........ccccviiiiiiiiiiieeeee e, 142
Executing the Test REPOTT.........iiiiiiiiiiieeeiie ettt et eve e e e e e s esr e aaeeeeeseennnnes 142
Using the HTML Test REPOTL.......couiiiiiiiiiiiieiieieeteetei ettt 145
Using the Test Requirement Coverage Report.........cocevoiiriiniiiiiniiiiiiiieneceeceeee st 147
Customizing the TESt REPOTT........cciviiriiiiiieiiiecie ettt eeeeree st e sbeesereestaeesaessaraeesssnsaeeeessenees 149
Generating Test Reports with Rational Publishing Engine...........cccccooiiiiiiiiiiiiiiinieieeeee 149
Creating the TeSt REPOTT.......ccciiiiiiiiieit ettt sre e eeae e teeesteesseessbeesssaessseessssnnns 149
Test Requirement Coverage REPOTt........c.vevcvieiiiiriieiie e cieesieesreesre e eteesbeeseseeseseesnessennes 150

Creating Report TeMPLAtes........c.eevviiriiiiciieeieesteesit et esteeieeeeeeeteessreeseseessseessseesneessnsaeesssnsnns 152

Using the TestConductor APL...........ccuviiiiiiiieiiie ettt et e et e e e e ebe e e e e e e e e e esneeensaeees 153
Available TestConductor API Commands...........ceeuerierieriinienieeieetesiescese et 153
Defining Callbacks for TestConductor fUNCHONS.ccuverieerirerireiie et esve e 155

Advanced Test DefiNitioN.......ccoueiineiieiisensnnisenssnnnsensencsesssnnsssessssesssessssssssesssassssessssssssane 157

Specifying Requirements with Sequence Diagrams...........cceecveereeeiiieiiiieniienreeeeiieeeeeereeeeeeeeeees 157

Graphical Feature SUPPOTL........coouiiiiiiiiiiiiiee ettt ettt st 157
Synchronous and ASynchronous MESSAZES.......c.eeevierreerireerieerieeereeereesreesreesreeserseeesssnnes 157
Linear and Partial OTder...........coiuiiiiiiiiiieeie ettt et eeeeen 158

PaTAmMICLELS.eeiiiiieiitiee ettt ettt e ettt e e bt e e st e et e st e e e bbe e e eabaeeeeeeean 160
DefiNing ParameELers.cceoueiiiiiiiiieiie ettt ettt ettt e st e st e saee e bt e et eebeeeabeeeaees 161
Parameter MaPPINE.........ccccvieriiiriieriieiieeieeereesreesreesseesereessreesseeasseessseesssaessseessseessseesessses 163

Using Time Interval for Delay Driving from Environment and TestComponents...................... 164

ACtIVALION CONAITIONS. .e.utteiiteiieeite ettt ettt ettt et e et e st e sateesbeeebee e bt e e eabteeeeeenbbeeeesnnees 165
Defining an Activation CONAItiON...........eieeciieiiiiieeeriieeecieeeeireeesreeeesveeeereeeseserrareeeaaaaeeeeas 166
CONAITION MATKS. ...ttt ettt et ettt st e bt e e st eesabeeesaeee 167
Preconditions (for SySML/HAIMONY).......ccveeriiiieiieeiiieeiieriteeie e eiee et e e e seneeseneesee e 168
Use Cases of Activation Conditions...........occueereiiiieiiieiiie ettt st ee e 169

Specifying Return Values and Output ValUES..........ccecevieiiiiiiiiniieie e 172

Ignoring UnrealiZ€d MESSAZES.ceuerutirierieniieieeie ettt sttt ettt sttt ettt e et e e satee e 175

Reference Sequence DIiagrami..........ccceiuiiiiieriiieiiiesiieeie ettt et bee st esteeseeee e 176

Life Line and Part DeCOMPOSIION.cccvieriieirieirieiieerieesireeieeereesebeesereesereessaeeseessseessseessnes 179

Advanced Sequence Diagram Test Definition..........coeiieiieiiiiiiiienii et 184

Defining a Sequence Diagram TeSt.........cceeevieriieriiierieeieesriesreesreesieeesseeereesserreeessssnseesesssssens 185
Creating a Sequence Diagram Test Case.........cceerveerieeriiiercrieniieerieerieeeieesreesreesereesseeessssnnes 185
Adding a New Sequence Diagram INStance...........coeevueeiiiiiiiiiieeiieiieestesee et 186
MaAPPING PATQMELETS.eviiiiiiiieiiiieeeiieeeeiee e ettt et e e etaeeesereeeesebeeesstbeeesssaeeessnssssssaanaaaaaeeeaans 187
Don't care values, Ranges, and Tolerances.............ccueevveercieriiieniieenieeie e siee e sreesneeeeenes 189
Exiting the Define Test Dialog BOX.....ccoicieriiieiiieieeiie ettt e 195

Use Cases of Sequence Diagram TeSt Cases........ccuvieeruiieerciiieiiiieeeiieeerreeessreeeeeeesssesnsnseseeeeeens 196
N3 0010] (LY (07311 o) SR PPPRU 196
AULOMALIC DITVET....eeviiiiiiieeiie ettt ettt st ettt e aaeeteeenbeesabeesabeesenssneeesennsees 198
Ordered SD INSANCES.eertieiiieiie ettt ette et et e sttt e st e et eeteesnbeesabeesateessnsbeeeessnseeeessnnsseas 200
Driver-AssiSted IMOMILOT.c.eetieiieieeie ettt ettt et e eeeeetesaeeeneeeeeneeeeneeeens 202
Choosing Between Alternatives in @ CYCIe........coviivieiiieiiieriiecie et e e 205

User Defined Driving Operation Calls...........ccciiiiiiiiiiiiieiieeiieriesie ettt e e 208
RTC DriverlnitCode and RTC_DriverlnitCodeAdditional............coceeviiiiiiiiiiiiiiiiieieee, 210
RTC _DriverCallCode and RTC_DriverCallCodeAdditional............ccoceveeniiniinnenicnieneenee. 210
Clean TeStCOMPONENL.......cccvierreeireeieeeteeereesreessreessaeesseeeseesseesseessseessseessseasssseesassssseeessnns 211
Clean TesStPaCKAZE.vviiiiiii ettt e e e e et e e s b e e e eebraeaeeaeeeeesnnnnnnes 212
Deleting User Defined Driver Operation Calls............ccceeeciieeiciiieiiiiieecciee e e e 212

User Defined Stub Operation Calls............ccoceercieriiieniienieeie e eieesieeeiee s e sneeessnsneeeeeeenees 213
RTC_StubBodYCode.couieiiiiiiiiieiieieee ettt sttt et e 214
Clean TeStCOMPONENL.........uiirciireeiiieeriieeerteeeeetteesreeeesereeeeereeeassseesssseeesssseeesssseesesssssssssssees 215
Clean TeStPACKAZE.ecvvieiiieiie ettt ete ettt r e sb e e s v e e tbeestaeesbeesabaesssaeeeesssraeesesssrsens 215
Deleting User Defined Stub Operation Calls...........cocovierieniininiinieiiinienieeeice e 216

Black-Box Testing of External Files and LiDraries...........ccccccvverieivieeiiieecrienreesieeseeeiveeeessevveee e 216

TSt PACKAZES. ..ceeeeeiieetie ettt ettt ettt ettt e et e st e e s ate e s bt e e at e e bt e e bt e e e e anneee 217
Support for interfacing Files in C using <<ClnterfaceFile>> Stereotype.........cccccevevvrreerrireerennnnnn. 220
Using Serialize/Unserialize Functions for User Defined TYPeS........ccoverevierciieniieniieriieeeeeivveeennn 221

Using auto generated serialization /unserialization fUnCtions..............cceeveveercriercveerveesveesnveeennn 221

Using manually defined serialization /unserialization functions...........c.cceceerevvveeeersnieeessnnnnnnn. 222
Failure ANalySiS.....ccovviiciseicssnicssnisssnncssssncsssnsssssssssssssssssssssssesssassss 224
Failure REPOTLING.....ccvvieiiiiiieiiiecie ettt ette et s ettt e et e et e ssbeessbaessseesssaesaeessaesnsaeenseennsessnnsnes 225
Event sending OUt-0f-0TdET.........ccccuiiriiiiiieieeie ettt ettt e seaeeeeeeseeesaesnnnes 226
Event sending in-order, but parameter values do not match.............ccccevivviiiinciieeicciiiiieeeeee, 227
Event sending in-order, but parameter values not i TaNge...........ceevveerveerieereesveesreesivneeeeenes 229
Event consumption OUt-0f-0TdET...........coiiriiiiiiiiieiieteeee ettt 230
Event consumption in-order, but parameter values do not match............cceeeeeviieniirienniiennnn. 231
Event consumption in-order, but parameter values not in range............cccveevrveevreeerreescreesnneeeennns 232
Operation Call OUL-OT-OTAET..........cccuiiriieiii ettt sbe e streeeaeesseeesraessenes 233
Operation call in-order, but parameter values do not match............occeeiiiiiiiiiiniie e 235
Operation call in-order, but parameter values not in TaNge...........ceeveeerieeiierieeiieenieeeiiieee e 236
Operation call returned - Return value does not match............ccoevvverieeciencienciesieee e 237
Operation call returned - Out Parameter values do not match............ccoeceveviiniienciiee e, 238
Operation call returned - Out Parameter values not in range............ccceeeeveeeecieeencieeesieeeeeeeeeenns 239
DataFlow Message - Value does not MatCh.............coccuviiiiiiiiiiiie et 239
DataFlow Message - Value NOt in TANEZE..........eecvieerieeriiieiiierieesie ettt eieeeteesreesreessneeesennnseeeesnns 240
DataFlow Message out Of OTAET.......cc.eiruiiiiiiiiiiiieiieieee ettt e 240
F NS o) 10 211 (ST SRR 241
Using TestConductor from ECliPse.....iicceiicsiisniinisssnniccsssnniicsssssnsesssssssessssssssnsssssssssssssses 243
Using TestConductor from Rational Quality Manager.......cccceeeeeesssnnrecsssssssnnssssssssssescccses 245
TestConductor Rhapsody PIUGinS.......cceeiieiicnnicnsssniicssssssnecsssnssssssssssessssssssssssssssssssssssssses 246
TestConductor Merge Coverage Reports PIugin............ccooiiiiiiiiiiiniieiieeieeiee e 246
Merging MOdel COVETAZE TEPOTLS....ccuvierreerrreririesireetieeireesreesseesreessseesssessseessseesssessseessssessssssns 246
Merging COAe COVETAZE TEPOTLS. .. .cveerreerrierrrerereerieeeseesseesseessseessseasseessseessseesssseeessssssseeesssssses 247
Merging requirement COVEIaZE T@POTSeeueerurrerurreruieerteeeteeateesteesieeesseeesseeeaseesseesnseesnsessannens 247
TestConductor RQM PIUZIN........ccouiiiiiiiiieeiie ittt etee et e sreeser e e sebeesbaestsaeeesessnnaeessnnnnns 249
TestConductor Check Model PIUGIN........c.coccviiiiiiiiieiiiciecee sttt senae e s e 250
APPENAIXo.ureiirsrrresssrnssssrosssnssssssssssssssssasssssasssssssssssassssssssssssssssssssssasssssasssssasssssasssssssssssssssssssss 251
TestConductor Assert Macros (C/C++), TestConductor assert methods (Java), TestConductor assert
TUNCLIONS (AQQ)...ei ittt ettt et e et e e et e e e e eatee e eteeeesaaeeeetaeeeeetseeeenraeeeaaeeas 251
Using IntelliVisor for TestConductor ASSErt MacCrOS.cceevcveercveerieeriienieerieeereesieesveeeesnenees 254
Syntax for Activation Conditions / Condition Marks...........c.ccecveriieriieniieerie e 255
TeStCONAUCTOT IMESSAZES. ... veeeeeiiieeeiieeeiieeestreeesteeestreeeseteeessseeesssseeessssaesssseeessseeesssssssssseaeeseennnns 257
Errors/Warnings regarding messages in Sequence Diagrams...........cccceveeveenenniinsieeinieeinneennns 257
Errors Regarding Complete Sequence Diagrams and Test (test will not be executed)................ 257
LT 1 41101 41U 259
Limitations of design elements (SEqUENCE diAZIaAMS)......eevuvrerurreruierriieriieeiieeieeeiieeeeeeiieeeeeeans 259
Functional LAMItatioNS. .. .cecueeueeieiieetieste ettt ettt ettt et eat e et e et e te et enee e et e e eneeeeneeeenees 259

Document Structure

This user guide is organized as follows:

Chapter 1, Introduction, provides an introduction to IBM® Rational® Rhapsody®
TestConductor Add On through a high-level overview of the main features.

Chapter 2, Rhapsody UML Testing Profile, describes the defined stereotypes and
new terms which can be used for the definition and management of tests.

Chapter 3, Model-based Unit Test Definition, explains how to create Test
Architectures and how to define test cases with sequence diagrams, statecharts,
flow charts, or pure code.

Chapter 4, Test Execution, explains how to build and execute a test configuration.

Chapter S, Test Management, guides you through the process of creating and
editing the entire test suite.

Chapter 6, Upgrading old TestConductor Test Cases, describes the process of
upgrading of existing test definitions from older TestConductor versions.

Chapter 7, Advanced Test Definition, describes the powerful features of
sequence diagram test case definition like ordering, parameter mapping, activation
conditions, etc.

Chapter 8, Failure Analysis, explains how to analyze the source of a possible
failure (after you have made design extensions and modifications).

Chapter 9, Using TestConductor from Eclipse, explains how to use
TestConductor when working with Rhapsody in Eclipse platform integration.
Chapter 10, Using TestConductor from Rational Quality Manager, explains
how to create test scripts and test cases in RQM for executing test cases with
TestConductor.

Chapter 11, TestConductor Rhapsody Plugins, describes how to use additional
TestConductor plugins for Rhapsody.

Contacting IBM® Rational® Software Support

IBM Rational Software Support provides you with technical assistance. The IBM Rational
Software Support Home page for Rational products can be found at
http://www.ibm.com/software/rational/support/.

For contact information and guidelines or reference materials that you need for support,
read the IBM Software Support Handbook.

For Rational software product news, events, and other information, visit the IBM Rational
Software Web site.

Voice support is available to all current contract holders by dialing a telephone number in
your country (where available). For specific country phone numbers, go to
http://www.ibm.com/planetwide.

Before you contact IBM Rational Software Support, gather the background information
that you will need to describe your problem. When describing a problem to an IBM
software support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To save time,
know the answers to these questions:

What software versions were you running when the problem occurred?
Do you have logs, traces, or messages that are related to the problem?
Can you reproduce the problem? If so, what steps do you take to reproduce it?

Is there a workaround for the problem? If so, be prepared to describe the workaround.

10

http://www.ibm.com/planetwide
http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/rational/support/

Conventions

The following table lists the conventions used in the Rhapsody documentation.

Style

Description

command] >
command?2

The greater-than (>) symbol leads you through the steps in a
menu or key sequence. For example, Add New > Package
means that you should first select Add New, then select
Package from the Add New submenu.

Bold type

Bold type indicates items that you should select, such as buttons
or checkboxes in dialog boxes.

For example:

Click Apply

Italic type

Italic type is used for emphasis, titles of referenced documents
and new terms.

Courier type

Courier type is used for file names and directory paths, user
input, and code-related items such as instance names and
properties.

<filename>

Angle brackets surround variable names that you should replace
with actual names. For example, you should replace <filename>
with the actual name of a file.

11

Introduction

Welcome to the User Guide for IBM® Rational® Rhapsody® TestConductor Add On.
TestConductor is part of the Rhapsody Testing Environment which is based on three main
components: “Automatic Test Architecture Generation”, “Automatic Test Case Execution”
and “Automatic Test Case Generation”. These three components are developed along the
UML Testing Profile as implemented in Rhapsody.

Rhapsody® Automatic Automatic

UML?°Testing Test Case Test Case

Profile Execution

TestConductor supports the two main features “Automatic Test Architecture Generation”
and “Automatic Test Case Execution” of the Rhapsody Testing Environment. The optional

IBM® Rational® Rhapsody® Automatic Test Generation Add On (ATG) supports the
feature “Automatic Test Case Generation”.

In the Rhapsody Testing Environment the implementation of test cases can be chosen out
of:

* Sequence diagrams

* Statecharts

* Flow charts (only Rhapsody in C/C++)
e Pure code

The Rhapsody Testing Environment provides the ability to test a design against its
requirements. Advantages of using sequence diagrams as test cases are:

* Graphical definition

* Monitors/drivers

* Parameterized sequence diagrams

* Color-coded failure sequence diagrams

TestConductor is a model based testing environment used to debug and test object-
oriented embedded software designed in Rhapsody. TestConductor supports unit testing as
well as software integration testing based on graphical test definitions using sequence
diagrams. In Rhapsody in C++, Rhapsody in C, Rhapsody in Java, and Rhapsody in Ada
test cases can be defined also by statecharts, flow charts (only C/C++), or pure code.
Using sequence diagram related test cases, TestConductor supports an advanced graphical
failure analysis. These features make it easy to define and execute extensive test suites, as
well as to create complex tests drivers and test monitors. TestConductor supports
Rhapsody in C++, Rhapsody in C, Rhapsody in Java and Rhapsody in Ada. Limitations
regarding the different languages can be found in the chapter Restrictions.

12

This document focuses on the animation based testing mode, which is applicable to
Rhapsody in Java, Rhapsody in Ada, Rhapsody in C++ and Rhapsody in C. When using
Rhapsody in C++ or Rhapsody in C++ the assertion based testing mode is recommended
which is explained in details in the “TestConductor User Guide.pdf” document.

Rhapsody UML Testing Profile

The Rhapsody UML Testing Profile contains new terms and stereotypes that can be used
to model test artifacts in Rhapsody. It is based on the official UML Testing Profile.
However, several elements defined in the UML Testing Profile are currently not part of the
Rhapsody Testing Profile, while the Rhapsody Testing Profile contains additional elements
that are not part of the UML Testing Profile. These additional elements are used for test
activities that are not addressed by the UML Testing Profile, for instance stubbing.

Automatic Test Architecture Generation

The automatic test architecture generation — first supporting layer of the Rhapsody
Testing Environment and part of TestConductor — automates the complex task of creating
the test environment for e.g. arbitrary classes of the UML design.

wTestContexts
testcontext 1

1 wSUTa
atm Bank AT [Hardwara IHardware |1 wTestComponents

hrave: HWYE rrulatar
/ atrmPont hwCam
[\o /]

|ATH

[ATH

—
hankComT‘Bank

!

bankCam ’J_‘ |Bank

1 aTes&'C'lomponentn
be:BankEmulator

From the Rhapsody project the user easily initiates the automatic generation of a test
architecture including:
* Creation of a new test package
* Creation of a new test context including
1. System under test (“SUT”)
2. Test components

3. Links between SUT and test components

Test Case Definition

A test case represents the smallest element that can be defined and executed by
TestConductor. A test case describes a sequence of input stimuli and expected behavior, in

13

order to verify a certain functional behavior of a system under test. Test cases can define
both, black box and white box behavior.

TestConductor supports several ways to define test cases:

* Sequence diagrams
* Statecharts
* Flow charts (only Rhapsody in C/C++)

e Pure code

With the optional add-on Rhapsody® Automatic Test Generation (ATG™) for Rhapsody
in C++ test cases can be generated automatically.

Test Case Execution

TestConductor is a fest case execution engine and represents the second stage of the
Rhapsody Testing Environment. It enhances the testing capabilities by not only executing
the automatically generated test architecture, but it also offers a test execution analysis
with respect to the expected results. If the test case e.g. is implemented by a sequence
diagram the expected behavior is expressed by

e The ordering of defined messages

* Parameter values of messages

* Messages from SUT to testing components
* Specified return values on operation calls

Using TestConductor

This manual assumes that Rhapsody and TestConductor are already installed on your
system, and that you have a valid license. If you need assistance with installation or
licensing, contact customer support.

To execute tests, TestConductor relies on the compiled and linked model code of the test
architecture. Therefore, the project with the system under test must be in a state such that
you can compile and run the test architecture, just as you must do to use the interactive
simulation capabilities of Rhapsody. If you are using TestConductor with testing mode
“AnimationBased” (property TestConductor.Settings. TestingMode), you must compile the
code of at least the test components with animation instrumentation.

Note: For Rhapsody in Ada, make sure that you rebuild Rhapsody’s framework before
using TestConductor. To rebuild the framework, select “Build framework” from
Rhapsody’s code menu (after opening an Ada model). You only have to rebuild
the framework once.

Note: If you are using TestConductor with testing mode “AnimationBased” (property
TestConductor.Settings. TestingMode), make sure that you have compiled and
linked an executable component with animation instrumentation.

14

Note: If you are using TestConductor with testing mode “AnimationBased” (property
TestConductor.Settings. TestingMode), make sure that the properties
CG: :0Operation::Animate, CG: :Operation: :AnimateArguments,
CG::Event::Animate, and CG: :Event: :AnimateArguments of those
messages used for test execution based on sequence diagrams are switched on.
Otherwise they are not animated and cannot be tested with TestConductor. Ensure
this for the properties of these relevant messages, and also for their parent class
and package properties.

This guide uses sequence diagrams that are included (or have to be additionally created) in
the CashRegister sample. The chapter Advanced Test Definition uses sequence diagrams
from the PBX sample. Both samples do not provide step-by-step information.

15

Rhapsody
UML Testing Profile

The Rhapsody UML Testing Profile is based on the official UML Testing Profile. It
contains new terms and stereotypes that can be utilized for model testing artifacts in
Rhapsody. A couple of elements defined in the UML Testing Profile are presently not part
of the Rhapsody Testing Profile. However, the Rhapsody Testing Profile includes
supplementary elements that are not part of the UML Testing Profile. Stubbing, for
example, is one of these additional elements that are used for test activities not addressed
by the UML Testing Profile.

For further information on the Rhapsody UML Testing Profile please refer to the
TestConductor Tutorial, where depict examples on the Rhapsody Testing Profile are
provided. Hence, it is recommended to utilize the TestConductor Tutorial for training
purposes prior to going into further detail in this document.

Structure Overview

The Rhapsody Testing Profile is prearranged in three major packages with additional sub-
packages and the TestingProfile stereotype.
* Rhapsody UML Testing Profile (UML20TP)
1. TestArchitecture
2. TestBehavior

LML20TP

Testa&rchitecture TestBehaviar

* Rhapsody TestConductor (RTC)
1. TestArchitecture
2. TestBehavior

16

RTC |

Testirchitecture | TestAERavior
Diagrams

TestDocumentation

* Automatic Test Generation (ATG)

AT

Adding the Testing Profile automatically

The first usage of any TestConductor functionality automatically adds the Rhapsody
Testing Profile to a model. For example this can be done by choosing the Rhapsody menu
entry Tools > TestConductor.

In case the model does not yet contain the actual Rhapsody Testing Profile, TestConductor
can add the missing Rhapsody Testing Profile automatically.

17

TestConductor |

'j Could nat find the Rhapsody TestingProfile in the currently active project. TestConductor cannat be used without this profile.
L]

Select <Yes: ko add the Rhapsody TestingProfile to the project, seleck <Ma if wou do nat wank the TestingProfile ko be added ko the project.

Ja I Mein |

Select Yes to add the Rhapsody Testing Profile to the model. Select No to abort this
process.

In case the Rhapsody Testing Profile is unloaded, TestConductor ask to load it.

TestConductor) |

"j The Rhapsody TestingProfile in the currently active project is unloaded, TestConductor cannok be used without this profile,

Select <Ves> toload the Rhapsody TestingProfile, select Mo if vou do not want the TestingProfile to be lnaded.

Ja I Mein |

Select Yes to load the Rhapsody Testing Profile to the model. Select No to abort this
process.

In case a loaded profile already uses the name “TestingProfile” Rhapsody TestConductor
advises the user.

TestConductor) |
E Found a profile with the name "TestingProfile" in the project which is not the Rhapsody TestingProfile. TestConductor cannot be used without the Rhapsody
. TestingProfile,

Select OK. After removing the existing profile with name TestingProfile from the model
redo the action to start Rhapsody TestConductor.

Once the Rhapsody Testing Profile has been loaded into a Rhapsody project by starting
TestConductor the Rhapsody browser window will contain the above stated testing profile
packages and its individual sub-packages as shown in the following picture.

18

=1 Profiles
=% TestingProfile
#-_1 Chiject Model Diagrams
=1 Packages
=B aTG
H-«5x Sterectypes
--BrTC
=1 Packages
=15 Testarchitecture
=1 Packages
+-E3 Cpplnit
=3 cunit
+-F3 Diagrams
=3 TestRT
+-«5x Stereotypes
+ - Types
=15 TestBehavior
+-«5x Stereotypes
=B TestDocumentation
+- G Matrix Layouts
+-«5x Stereotypes
+-[# Table Layouts
=3 umLzoTP
=1 Packages
=15 Testarchitecture
H-«5» Sterectypes
=5 TestBehavior
H-«5» Sterectypes
+-#5» Stereotypes
+ ﬁ Tags

Adding the Testing Profile manually
It is also possible to add the testing profile manually to a model:
* Open your project in Rhapsody
* Select the menu item File > Add Profile to Model...
* Select the following Data Type: ‘Profile (*.sbs)’

19

Add To Model

2| x|
Suchenin. |) TestingProfile_py - e & ek mE-
Default.sbs ¥ | £dd Suburits
TestingProfile. sbs [T Add Dependerits
Az Unit
{* Az Feference
D ateiname: ITestingF’rofiIe Offnen I
Drateityp: IF'ac:kage [* zbz) j abbrechen |
= 4
Clasz [".clz]
Companent [*.cmp)
All Diagrams
&l Files [7.7)

Obiject Model Diagram(®.omd)
Structure Diagram(* std)

Uze Caze Diagram [*.ucd) —
Sequence Diagram [*.msc)

Component Diagram [* ctd) =7

Select in Rhapsody installation folder:

‘...\Share\Profiles\TestingProfile\TestingProfile rpy\Te
stingProfile.sbs’

Press Open to add the Rhapsody Testing Profile to the model.

Functional Specification

The functional specification of the Rhapsody Testing Profile shall be explained by means
of its structure stated in the previous chapter Structural Overview.

UML Testing Profile (UML20TP) Package

The UML20TP package contains stereotypes and new terms derived from the official
UML Testing Profile. It consists of two major packages:

e TestArchitecture and
e TestBehavior

as shown in below picture.

20

=5 urLzoTe
=-[1 Packages
= Testarchitecture
—|-«5% Stereatypes
5% SUT
5% TestComponent
5% TestConfiguration
#5% TestContext
= TestBehavior
—|-«5% Stereatypes
5% TestCase
5% TestObjective

TestArchitecture Package
The TestArchitecture package consists of the stereotypes

« SUT

* TestComponent

* TestConfiguration
» TestContext

The system under test (SUT) is the component being tested. A SUT can consist of several
objects. The SUT is exercised via its public interface operations and events by the test
components, the test context or the system environment (ENV).

A test component (TestComponent) is a class of a test system. The fest component objects
(TestComponentinstances) realizes partially the behavior of a test case. An instance of a
test component may have a set of interfaces which are used to communicate via
connections with other test component instances or with SUT objects. It also may have
operations, so called driver operations (DriverOperations) that can drive SUT operations
or call events of the SUT and so called stub operations (StubOperations) which are able to
generate necessary “stub” return values.

The test configuration (TestConfiguration) is a dependency to a code generation
configuration. Depending on this configuration the code for the complete test context
including its test cases can be generated, built and executed.

A test context (TestContext) describes the context in which test cases are executed. A test
context is responsible for defining the structure of the test system, i.e., which test
component objects and which SUT objects exists and how they are interconnected. The
test component instances and SUT objects are normally parts of a test context. Since test
cases are operations of a test context, a test case can access both the test component
instances and also the SUT objects.

TestBehavior Package
The TestBehavior package contains two stereotypes named

* TestCase
» TestObjective

21

A test case (TestCase) is a specification of one case to test the system under test including
what to test. It defines the input stimuli and the expected results to be observed. It
implements a test objective. A test case is an operation of a test context (described above).

A test objective (TestObjective) is a named element describing what should be tested. It is
associated to a test case.

22

TestConductor (RTC) Package

The RTC package consists of three major packages: TestArchitecture, TestBehavior and
TestDocumentation as shown in below picture.

=-[J RTC(RO)
EII:I Packages
=[] TestArchitecture (RO)
EII:I Packages
@7 CppUnit (RO)
@~ CUnit (RO)
#-[] Diagrams (RO)
i-[TestRT (RO)
#-E2 Stereotypes
- Types
=[] TestBehavior (RO)
{5 Stereotypes
=-[1 TestDocumentation (RO)
g Matrix Layouts
-5 Stereotypes
(= Table Layouts

TestArchitecture Package
The TestArchitecture package contains the stereotypes:

* Subpackage CppUnit
e CppUnitConfig
o CppUnitContext
* Subpackage Cunit
e CUnitConfig
o CUniContext
* Subpackage Diagrams
o TestContextDiagram
* AUTOSAR RTE
* AUTOSAR RTElnstance
* Arbiter
* Arbiterinstance
* ControlArbiter
* instantiated
* usedSUTObject
* usedTestComponentObject
* NoConsoleApp
* ParameterTable
* replacement
* greyboxreplacement
* greyboxinstancereplacement
* instancereplacement

23

* filereplacement
* scheduled

* Scheduler

* SCTClInstance

* stubbed

e Stub

» TestActor
» TestFile

» TestComponentlnstance

* TestComponentObject

* TestingConfiguration

* TestPackage

» TestParameter

» TestLink

* use ParameterTable

* use_replacement

* use greyboxreplacement
* use_greyboxinstancereplacement
* use_instancereplacement
* use_filereplacement

e TestSUT

* TestSUTObject

Subpackages CppUnit and CUnit contain stereotypes for the integration of CppUnit and
CUnit testing with Rhapsody.

Stereotype CppUnitContext can be applied to a class and sets some properties for CppUnit
testing integration. You can change a test context to CppUnitContext — and vice versa - by
right-clicking a test context and secting “Change to > CppUnitContext”.

Stereotype CppUnitConfig can be applied to a configuration and provides a set of tags for
customization of the CppUnit testing integration with Rhapsody.

Stereotype CUnitContext can be applied to a class and sets some properties for CUnit
testing integration. You can change a test context to CUnitContext — and vice versa - by
right-clicking a test context and secting “Change to > CUnitContext”.

Stereotype CUnitConfig can be applied to a configuration and provides a set of tags for
customization of the CUnit testing integration with Rhapsody.

Subpackage diagrams: A test context diagram (TestContextDiagram) is a structure
diagram that contains the SUT instances, the test component instances and their
interconnections. It is used to define the structure of the test context graphically.

24

w TestContexts
TCon_CashRegister

1 #SUT e
itsCashREegister CashFegister

b

by

1 c-cTestC-:-mpu:-nentlrlE’:ance.TestEnmpnnentn
itsTC _at_bwiTC_at_bhw

% wTestComponentinstance, TestComponents

itsTC for itsProduct: TC for itsProduct

%

=

wTestComponentinstance, TesAComponents

itsTC for itsCountedProduct: TC for itsCountedProduct

The test context diagram is being generated during the test architecture generation inside
the test context. It is a structure diagram stereotyped with TestContextDiagram.

Stereotype instantiated is used to label associations that are always instantiated with a
valid link during runtime. TestConductor interprets associations labelled with this
stereotype like links. <<instantiated>> asscociations are expected to own a
stereotyped dependency on the object to which the association will be initialized at run
time. This dependency will be stereotyped <<usedSUTObject>> if the association
points to an object used as SUT. It will be stereotyped
<<UsedTestComponentObject>> if the associations points to a
TestComponentObject.

Stereotype Arbiter is used by TestConductor for auto generated test components that
control the execution of a SD test case.

Stereotype Arbiterilnstance is used by TestConductor for test component instances that are
instances of Arbiter test components.

Stereotype ControlArbiter is used by TestConductor to mark a dependency of a SD test
case on a Arbiter test component that controls the SD test case.

25

Stereotype NoConsoleApp can be applied to configurations in order to suppress opening a
console when running the application.

Stereotype ParameterTable is used to mark a controlled file as a parameter table definition
that contains values for all external test parameters of a test context.

Stereotype replacement is used to mark a dependency of a test component on the original
class that is replaced by the test component in the test architecture.

Stereotype instancereplacement is used to mark a dependency of a test component object
(implicit object) on the implicit object that is replaced by the test component object in the
test architecture.

Stereotype filereplacement is used to mark a dependency of a test file on the original file
that is replaced by the test file in the test architecture (Rhapsody in C).

Stereotype greyboxreplacement is used to mark a dependency of a <<TestSUT>> on the
original class that is replaced by the <<TestSUT>> in the test architecture (for Grey Box
Testing).

Stereotype greyboxinstancereplacement is used to mark a dependency of a SUT greybox
object (implicit object) on the implicit object that is replaced by the greybox SUT object in
the test architecture.

Stereotype scheduled is used to mark a dependency of a test context on a Scheduler test
component that controls the starting and stopping of test cases of the test context.

Stereotype Scheduler is used to mark an auto generated test component that is used to
control the activation and termination of test cases.

Stereotype SCTClInstance is used to mark a test component instance to be an instance of a
statechart test case test component.

Stereotype stubbed is used to mark an operation of a test component to be stubbed, i.e.,
that the behavior o fthe operation has been changed for testing purposes.

New term TestActor is used for test components that have the role of an actor in the test
architecture. Test actors replace actors for testing purposes.

New term TestFile is used for test files in the test architecture. Test files replace files of the
design for testing purposes.

New term TestComponentlnstance is used to specify instances of test components.

New term TestComponentObject is used to stereotype copies of implicit objects in the role
of test components.

Stereotype TestingConfiguration is used to mark a configuration that is used for testing
purposes. The stereotype TestingConfiguration provides several tags that can be used in
order to define specific settings for the generated testing code.

New term TestPackage represents a package that contains testing related model elements,
e.g. other test packages, test contexts or test cases. It allows grouping of multiple test
related elements into one package, and it can be used to separate testing related elements
from design related elements.

Stereotype TestParameter is used to mark an attribute of a test context to be a parameter
that can be controlled by a testing configuration by using a parameter table.

26

Stereotype use ParameterTable is used to mark a dependency of a testing configuration
on a parameter tanle in order to specify that the testing configuration shall apply the linked
parameter table for the test parameters of the test context for which the testing
configuration generates code for.

Stereotype use_replacement is used to mark a dependency of a test component instance on
a test component that is a replacement of a design class for testing purposes.

Stereotype use_instancereplacement is used to mark a dependency of the test context on a
TestComponentObject (i.e. a greybox replacement of an implicit object used in the role of
a test component).

Stereotype use_filereplacement is used to mark a dependency of a test context on a test file
indicating that this test file is used by the test context for testing purposes.

Stereotype use greyboxreplacement is used to mark a dependency of a SUT instance on a
<<TestSUT>> - which is a replacement of a SUT class for Grey Box testing purposes.

Stereotype use greyboxinstancereplacement is used to mark a dependency of the test
context on a TestSUTODbject (i.e. a greybox replacement of an implicit SUT object).

New term T7estSUT is used to mark a replacement class that is basically a copy of the
original SUT class (used only for Grey Box Testing).

New term TestSUTObject is used to mark a replacement object (basically a copy of the
original implicit SUT object — used only for Grey Box Testing).

Stereotype TestLink is a stereotype on links an connectors (SysML). <<TestLink>> sets
a code generation property that forces generation of link initialization code for link,
regardless of its location in the design/test architecture hierarchical.Normally, a link has to
be located at least on the least level containing the linked instances. Using stereotype
<<TestLink>> allows TestConductor defining the link locally to the test architecture
although the link refers to instances anywhere in the browser hierarchy.

Stereotype Stub prevents model elements in TestComponent, TestComponentObject,
TestFile, TestSUT, and TestSUTODbject from being modified by TestArchitecture update.
TestArchitecture update will omit updating model elements stereotyped <<Stub>>,

TestBehavior Package
The TestBehavior package is composed of a number of stereotypes like:

* CodeCoverageResult
* CoverageResult

* ModelCoverageResult
* DefaultOperation

* DefaultTriggeredOperation
* DriverOperation

* RTC InstInfo

* RTC Msglnfo

* RTC Operatorinfo

* RTC Reflnfo

* SDlInstance

27

* StatechartTestCase
* StubbedOperation
* StubOperation

* TestAction

» TestAssignment

» TestCondition

» TestResult

* TestScenario

* Unrealized

e WitnessScenario

A CodeCoverageResult is a document that reports the code coverage by one or more
TestCases. Code coverage computation is supported only for assertion based testing
moode.

A ModelCoverageResult is a document that reports which model elements are covered by
one or more TestCases. Model coverage can be enabled using tag
ComputeModelCoverage on the testing configuration.

A CoverageResult is a document that reports which model elements are covered by one or
more TestCases. This stereotype is maintained only for compatibility reasons.

A default operation (DefaultOperation) defines the default behavior of an operation of a
test component. A test case in which the behavior of this operation is not explicitly
specified uses this default behavior in the current test case execution.

A driver operation (DriverOperation) is an operation of a test component which is able to
inject input stimuli to the SUT objects. It is generated automatically by TestConductor for
the test component class that calls a message of a SUT object defined in a sequence
diagram. During execution of the test case, TestConductor calls the driver operation, and
as a result the test component stimulates the SUT as it is described in the used sequence
diagram.

The stereotype RTC InstInfo contains two tags RTC IgnoreSCBehavior and

RTC Monitor. When adding this stereotype to an instance line of a test scenario, the user
can set these tags. TestConductor uses these tags when executing the test. If the tag

RTC IgnoreSCBehavior is set, TestConductor ignores the normal state chart behavior of
the tagged instance. If the tag RTC Monitor is set, TestConductor just monitors all
messages starting from the tagged instance.

The stereotype RTC Msglnfo contains tags RTC Monitor, RTC Receiver, etc. When
adding this stereotype to a message in a test scenario, the user can set these tags. If the tag
RTC_ Monitor is set, the tagged message is just monitored by TestConductor. If the tag
RTC Receiver is set, the tagged value is used as the real receiver instance of the tagged
message. If the tag RTC DriverCallCode is set, TestConductor generates the string
contained in this tag instead of the standard call code TestConductor generates for driver
operations. If the tag RTC InitCode is set, TestConductor generates the string contained in
this tag instead of the standard init code TestConductor generates for driver operations. If
the tag RTC Msgld is set, the specified string is used to reference the message in macros
RTC ASSERT SD _NAME. If the tag RTC StubBodyCode is used, TestConductor
generates the string contained in this tag instead of the standard stub code TestConductor

28

generates for stub operations. For further information please read the chapter User Defined
Driving Operation Calls at page 208.

The stereotype RTC RefInfo is used internally for unique identification of messages in
sequence diagrams which are referenced by other sequence diagrams.

A sequence diagram instance (SDInstance) represents one instance of a test scenario.
When using a sequence diagram for testing purposes, several parameters must be defined
that influence the behavior of a test case. A combination of a sequence diagram with such
a set of parameters forms a sequence diagram instance.

Stereotype StatechartTestCase is used to stereotype the dependency of a statechart test
case on the test component owning the statechart defining the test.

A stubbed operation (StubbedOperation) is an operation for which at least one test case
specifies a behavior that is different from the default behavior. The different behavior is
stored in a stub-operation. The stubbed operation decides at runtime depending on the
executed test case if either the default behavior should be executed or a specific stub-
operation.

A stub operation (StubOperation) is a replacement of an operation of a test component
class. It realizes the code for an operation call return value specified in the referenced
sequence diagram. The code of the stub operation is generated automatically by
TestConductor.

A test action (TestAction) is an action block that can be placed on life lines in
TestScenarios. There are different kinds of test actions: <InitAction>, <PreCallAction>,
<CallAction>, <PostCallAction>, <StubAction>. Inside these actions, one can place e.g.
assertions to perform complex checks on output values (return or out arguments), or one
can write code that initializes complex input data.

These kinds of TestActions correspond to the tags of RTC_MsgInfo

e <InitAction> - RTC_DriverlnitCode
e <PreCallAction>- RTC DriverlnitCodeAdditional
e <CallAction> - RTC DriverCallCode

e <PostCallAction> - RTC_DriverCallCodeAdditional

<StubAction> - RTC StubBodyCode

Note, that both specification techniques are mutual exclusive. If such TestActions are used
in order to determine the code propulated for the respective message, the RTC Msglnfo
tags are ignored for this message.

A test result (TestResult) represents an outcome of an execution of a test case. It is a
textual report that contains detailed information about the test case execution, e.g. if the
test case has passed or failed.

The stereotype TestScenario (test scenario) contains two tags RTC ActivationCondition
and RTC SDParameters. When adding this stereotype to a test scenario, the user can set
these tags. With the tag RTC ActivationCondition the user can specify the activation
condition of the sequence diagram. With the tag RTC SDParameters the user can set the
parameters of the sequence diagram.

Messages with stereotype Unrealized are filtered out and ignored during test execution.
See also section Ignoring Unrealized Messages.

29

TestDocumentation Package

The TestDocumentation package contains a Matrix-Layout TestRequirementCoverage and
a Table-Layout TestResultTable in order to present test information in matrix and table
notation.

The layouts are used to define two stereotypes:

* TestRequirementMatrix
» TestResultTable

A TestRequirementMatrix shows in an array view if and how requirements are tested by
test cases. The left hand side of the array shows all existing test cases. The upper side
shows all the requirements. The cells contain an entry if a TestObjective from the test case
to the requirement exists in the model, for instance from test case Code tc 0 to

requirement REQ].
[zl % To: Requirement Scope: CopCashRegister
lview - | ¥ T | v Brral PReaz |EReos @ Reos | REos [E)Reqs | @ Reo7 | B RES | B REQ
E TestConkexts -~ % Codete 0| 4] REQL
= &ITL‘COD;E:shReg\ster *. Code_tc_1 Ll REQH
b SUTs *, Code_tc_ 2 1 REQT

ﬂ Test Context Diagrams
=% TestCases
=%, Code_tc_0{)
=B, Testobjectives
Co REQL
=%y Code_te_10)
B4 Testobjectives
“obl REQ4
=% Code_te_2()
=8 L, TestObjectives
T4l REg?
¥ Code_te_30)

%, Code_tc_3

J1aifisyysenddy radoag aseqisa) twolq

U‘Welcums to.. | & & Structure_of |ﬂ testrequirem.

A TestResultTable shows in a table form the existing test cases and their current result
values. The left column of the table shows all existing test cases. The right column shows
the current test case results, for instance verdict Passed for test case Code _tc 0.

N =11 e [verdit

re Model View = + ‘ Y S TCon_CashRegister __Code_te_01_0.html @‘ Passed

- (g TestComponents ~ S TCon_CashRegister__Cods_tc_1_0.html q:’g Failed

Ds' TestCantexts ¢ TCon_CashRedgister_Code_tc_2_0.html ¥ Passed
=-f# TCon_CashRegister

|3|_| Links 5 TCon_CashReqister__Code_te_3_0.html @ Failed

g SUTs S TCon_CashRegister_0.html @ Failed

[-hg Test Context Diagrams

E\---x‘f TestCases

@---x‘« Code_tc_00)
% Code_tc_1()
@---x‘a Code_tc_2()
@---x‘« Code_tc_30)

Automatic Test Generation (ATG) Package

The ATG package consists of several stereotypes which are enhancements to the UML
Testing Profile. For more information about the ATG package and its stereotypes please
refer also the Rhapsody Automatic Test Generation (ATG) User Guide.

30

Using the Testing Profile

The Rhapsody Testing Profile is automatically utilized by Rhapsody TestConductor. The
functionality of the tool set are explained in the subsequent chapters of this user guide.

Refining Testing Profile Stereotypes

Most model elements in a test architecture created by TestConductor are marked with
stereotypes defined in the Testing Profile. Stereotypes are used for three functions: 1.) To
arrange special elements in the same group in the model browser ('new term' stereotypes);
2.) As a hook for TestConductor actions (TestConductor actions are only available on
certain elements); 3.) Stereotypes add or modify certain properties/tags of elements of the
test architecture.

For example test cases in a test architecture are basically operations provided with the new
term stereotype <<TestCase>>, which sets some property values and leads to grouping all
test cases in the model browser underneath the node TestCases (instead of operations).
Also several TestConductor actions (e.g. “Update TestCase”) are only possible for
<<TestCases>> but not for common operations. As another example the stereotype
<<TestingConfiguration>> is used to distinguish standard configurations from testing
configurations which are adjusted to the special needs of the TestConductor test
architecture. A <<TestingConfiguration>> has additional tags for configuring additional
features (like coverage measurement) or fine-tuning the test execution (e.g. rtc_log_kind
to define the manner of logging).

Users may wish to create their own stereotypes to have a simple and transparent way to
induce specific changes to elements in reoccurring scenarios. But if settings or tags are to
be modified which are also affected by a coexisting Testing Profile stereotype on the same
element -meaning that two stereotypes are trying to modify the same property in the same
way- it is not sure which stereotype's modification is actually applied on the element,
therefore it is not recommended to have conflicting stereotypes. The option to replace the
Testing Profile stereotype with the user stereotype is not advised either, since the Testing
Profile stereotypes act as hooks for TestConductor actions, thus disabling TestConductor
functionality on that element. The solution is to have the user stereotype inheriting from
the Testing Profile stereotype, thus preventing conflicts and preserving TestConductor
functionality on that element'.

In fact the Testing Profile already provides such a refined stereotype: The stereotype
<<TargetTestingConfiguration>> inherits from stereotype <<TestingConfiguration>> and
adds additional tags and modifications to properties suitable for test execution on target.
Because of the inheritance of the original stereotype <<TestingConfiguration>> all
TestConductor actions expecting a testing configuration will accept this
<<TargetTestingConfiguration>> as well.

'Note that changing default values of TestConductor stereotypes may affect the functionality of the test
architecture.

31

Model-based
Unit Test Definition

The term unit test is often used within the software development, but interpreted quite
different. Unit tests are performed on differently large software units like simple functions,
simple classes up to complex function libraries. However, the goal of each unit test is in
most cases the same. On the one hand the unit is tested for its functional behavior. On the
other hand often additionally structural analyses are accomplished, in order to find
uncovered (dead) code.

In order to prepare, execute, and assess a unit test several steps are usually performed:

A test architecture (or test harness or test frame) must be constructed
Test cases must be defined and implemented

Test cases must be executed on the host machine

Test cases must be executed on the target machine

bl S

Each of the four mentioned steps is usually time consuming and difficult to perform.
TestConductor makes the preparation, execution, and the assessment of tests much easier
by lifting the test process up to the level of UML models, and by offering a high degree of
automation for the steps listed above.

TestConductor supports unit testing on model-level by following the UML Testing Profile.
Therefore TestConductor automates the time consuming and complex task of test
environment creation. The automatic test architecture generation can be used for:

* Simple classes (In SysML: Activities, blocks, Viewpoint)
* Simple classes with inheritance

* Composite classes

* Composite classes with inheritance

* Objects (In SysML: Parts)

* Files (Modules)

The other complex task of unit testing is the definition of test case or test scenarios,
typically done by writing test code in the same language than the unit to be tested. Model-
based unit testing with TestConductor combines the advantage of graphical test case
definition via sequence diagrams or flow charts with the familiar pure code based test
cases. Using the optional add-on Rhapsody Automatic Test Generation (ATG), you have
also the possibility to perform automatic test case generation.

The next chapters use the CashRegister model known from the Rhapsody “Essential”
Tool Training. The unit test will be done on the CashRegister class.

32

ProductDatabase Cverview)

«Usages

CashRegister &| 1. | ProductDatabase BuyOneGetOneFree

™ itsProductDatabase

barcode

«SimplifiedAlccesss

itsProduct | ¥

Product

«Ordereds .
M name.char

= barcodeint
M unitPrice:int

+

itsProduct

%, Product{aBarcodeint aName:ch. ..
i Product()
%, Product{aProduct Product)

Automatic Test Architecture Generation

Testing units of a Rhapsody model using the Rhapsody Testing Profile requires certain
steps to be repeatedly performed. Therefore TestConductor provides a powerful feature
that creates the complete fest architecture automatically. Automatic test architecture
generation means:

Creation of a new test package

Creation of a new test context

Instantiation of the selected SUT class as part of the test context

Creation of test components

Instantiation and 'wiring' of test component instances as parts of the test context
Creation of an adequate code generation configuration

Adding a test configuration (dependency-relation) to the test context referring to
the created code generation configuration

Creation and drawing of a test context diagram

Fundamentally, TestConductor supports two different testing modes: Animation based and
assertion based testing mode. Test architecture creation will create different resulting test
architectures depending on the chosen testing mode:

animation based testing mode (applicable to C, C++, Java, Ada models): In
animation based testing mode, the scheduling and arbitration, i.e., the way
TestConductor decides whether a test case is passed or failed, is based on
animation messages coming from Rhapsody’s animation feature.

In particular comparison of message observations to the expectations according to
the test specification relies on serialization underlying the animation feature.

Test execution is based upon running an appropriate test specific observer in the

33

Rhapsody process communicating with the tested application via the Rhapsody
animation socket. Hence, animation based testing mode always requires:

© animation instrumentation (including requirement of appropriate serialization
for types, objects, classes, functions, events, e.t.c)

o socket connection between tested application and Rhapsody application.

» assertion based testing mode (applicable to C and C++ models only, not available
for Java and Ada): In contrast to animation based testing mode, in assertion based
testing mode both scheduling and arbitration of test cases is directly controlled by
assertions that are compiled into the test executable, i.e., scheduling and
arbitration of test cases is independent from Rhapsody’s animation feature. Since
in assertion based testing mode the test cases are part of the application itself,
neither animation instrumentation nor socket connection between tested
application and Rhapsody application is required, giving way for testing the
application without the animation overhead (e.g. enabling testing production code)
as well as testing without the requirement of a runtime connection to the tested
application (e.g. enabling testing on target).

This document focusses on animation based testing mode.

For animation based test architectures, test architecture creation will always introduce test
components that inherit from original design classes — if possible. Since stubbing of
operation calls is only possible in test components, stubbing is restricted by the restrictions
for inheritance imposed by the particular modeling language. E.g. Rhapsody in C models
only allow inheritance from interfaces — thus, regular classes can't be stubbed by inheriting
test components. For Rhapsody in C++ models only virtual operations can be stubbed,
non-virtual operations can't be stubbed using inheriting test components.

A table with the main differences between assertion based and animation based testing
mode can be found here: Differences between animation and assertion based testing mode
on page 102.

TestArchitecture generation can be customized interactively using property
TestConductor::Settings::CreateTestArchitectureMode (cf TestConductor
settings “General Properties”, page 132).

If CreateTestArchitectureMode is set to ‘Standard’, then project properties are used in the
generated code generation configuration while ‘Advanced’ opens a dialog that allows
selection of an existing configuration from which all overridden properties. settings, and
scope settings will be inherited.

It may sometimes be necessary to manually adjust the scope of the CG Component after
automatic test architecture creation. In rare cases, all classes of one package may have been
replaced by replacements, but types or events of that package still need to be regarded in
the scope. In this case, it might be helpful to select a package with right-click instead of
left-click. While left-clicking a package in the scope dialog selects the package and its
contents, right-click selects only the package and its non-selectable content.

Note that TestConductor can't determine meaningful parameters for non-standard
constructors automatically for instances of test components or classes having no default
constructor. It might be necessary to manually adjust the constructor calls for test
component instances or for the SUT after test architecture creation w.r.t. constructor
arguments.

34

Using Classes
For the next steps do the following:

* Open the CashRegister Model from the
‘\Samples\CppSamples\TestConductor’ folder.

* Browse to the object model diagram folder in the package CashRegisterPkg

* Open the object model diagram ProductDatabase Overview

There are two alternative ways to invoke creation of a test architecture for the class
CashRegister:

* Right-click on the CashRegister class in the Rhapsody browser and select
Create TestArchitecture

EI& CashRegisterPkg

-8 classes

g BuyOneGetOneFree
BuyThreeGetOneFree

-H Countedr ~ Features

Product Features in Mew Window
ProductDz Rl 5
TenPercer

#-B ThreeFord Search...
-y Dependencies Search inside. ..
=B Interfaces References...
=23 Object Model |
| CashRegis Creake Lnit
Product O
ProductDz
[Special OF Open Statechart
-1 Sequence Dia; Delete Statechart
B+ HardwarePkg Open Main Diagram
[]---& InterFacesPlkg
[]...El PredefinedTypes { Configuration Management #

[]---B PredefinedTypesc
[]---& RequirementsPkg
-2 Profiles Generate
Edit Code
Roundtrip

Change to 3

Implement Base Classes. ..

Edit Twpe Order...

Associate Image

Delete from Model

estArchitecture

* Right-click on the CashRegister class in the object model diagram and select
Create TestArchitecture

35

j CashRegister "&.i

1 itsProductDatabase

——

«Ordgreds

1. | ProductDatabase «Us

Features. ..

barcode
Open Skatechark
Delete Statechart
eGP0 «SimplifiedAccess»
TMevs Atkribute
Mew Operation itsProduct, | ¥
Mew Construckor

Froduct

Ports

Implement Base Classes. ..

Generate

Edit Code
Roundtrip

Dpen Main Diagram
Make an Object
Display Options ...

= name:char®
= barcodeint
= unitPrice:int

Cut

Copy
Copy With Madel

% ProductiaBarcodeint aMameaich...

a, Product()

S ProductiaProduct Product)

Remove From Yiew
Delete From Model
Format...

Make Default,..
Lacate

Expand ko fit text

TestConductor automatically creates the complete necessary test architecture which

consists of:

* Anew test context diagram with the test context TCon CashRegister
containing the CashRegister object itsCashRegister itself as SUT and all

Create Testarchitecture

necessary test component instances which are derived from the SUT associations

and

ports.

36

«TestContexts D&.
TCon_CashRegister

I «SUT»
itsCashRegister:CashRegister

07

hrw

o

I 1 «T&sttampoﬁenﬁnstan:e,TestCarn|"
itsTC_at_hw_of_CashRegister:

#*®

«TestComponentInstance:
itsTC_for_itsCountedProduct_of_CashRegister:

A new test package TPkg CashRegister which contains all generated test
components, the test context TCon CashRegister with the SUT
itsCashRegister, the test context diagram and the test component instances

=0 Components
=g 1 TPkg_CashRegister_Comp
-3 Configurations
#-8 «TestingConfiguration: DefaultConfig
H-Z Events
&2 Objects
=-Lh TestPackages
=% TCon_CashRegister _Architecture
(21 Dependencies
= TestComponents
(g, CountedProduct
F-gd TC_at_hw_of CashRegister
=9 TestContexts
=-8¥ TCon_CashRegister
E-(2 atributes
-2 Dependencies
- Links
(2] Statechart
g SUTs
4 itsCashRegister
=g Test Context Diagrams
&l Structure_of_TCon_CashRegister
= ‘ TestCompaonentinstances
itsTC_at_hw_of CashReqister
& itsTC for itsCountedProduct of C
%y TestConfigurations
#- Mg TCon_CashRegister _TestControl

37

Using Objects

Creating a test architecture on objects is a similar workflow as shown for classes, but in
order to create a test architecture for testing an object, the object can not be directly
instantiated as part of a test context. If an object was instantiated as part of a test context,
the object would be moved into another scope and thus the model would be modified.
Hence, in order to provide testing support for objects without modification of the original
design, the test contexts just references the object from the design using directed
associations and directed links. Since by default the original (implicit) object is referenced
with all its relations to other objects in the model and because TestConductor can't modify
these relations without modifying the referenced object or other model elements in its
scope, stubbing is not supported in test architectures for objects in animation based testing
mode.

In order to refer to an object, the test context is created with a directed association to the
selected object, which does not modify the object. This association is stereotyped with the
testing profile stereotype <<instantiated>>.

T estContesxts
TCon_Radio Object Radia is the System Under Test.
1 RadioPkg:Radi &
itsRadio 4 E——
ginstantiateds

Except for test architectures created with global object support (to enable global object
support for C or C++ models, check property
TestConductor::Settings::CreateTestArchitectureUsingGlobalObjects)
<<instantiated>> associations are not initialized by links but the test context is
instrumented with an additional constructor/initializer initializing the association with the
address of the global variable representing the object. This constructor/initializer has to
take the multiplicity of the object. into account The implementation of the
constructor/initializer is currently limited to Rhapsody in C/C++.

Initializer : Init in TCon_Radio

General] Description |mplementation l.ﬂ.rguments] Helatiuns] Tags

=83 TCon_Radio |TCar_Radio_lnit])
+-L Association Ends
i E Operations o1 TCDn_RadiD_setItsRadiD [me, sRadio) ;
o T a2

38

Except for test architectures created with global object support, the test architecture for
objects will not care about ports of the object, since the mapping of these ports to ports of
other objects may already be defined in the design. The only way to stimulate an object in
a system test architecture is to use the association from the test context to the object.

Rhapsody offers an alternative to create a test architecture on a selected object. The user
can expose the class of the selected object. For Rhapsody in C++ this alternative will set
the user into the position of applying unit tests to the underlying class of the object under
test. For Rhapsody in C, in general, exposing an object’s class might not be the best
choice, because exposing an object's class massively affects the code representation of
the object's functions.

Note: For Rhapsody in Ada, the user has to set the <<instantiated>> association
manually. This is due to the fact, that global objects are instantiated after
instantiation of the initial instances specified in the Initialization tab of the code
generation configuration's feature dialog. In order to set the associaton manually,
the initialization code entry of the Initialization tab of the code generation
configuration's feature dialog is used, e.g.:
Tpkg_object_0.TCon_object_0.set_itsObject_0(

p_TCon_object_0.all, Default.RiA_Instances.object_0);
if object_0 is an object of object_0_Class.

Using Files (Modules)

Creating a test architecture on files(to be more precise: modules) is a similar workflow as
shown for objects. Support of modules is useful mostly for Rhapsody in C, since
Rhapsody in C++ only allows external files within the scope of a CG component. Since
modules provide global declarations and definitions, test support for modules is realized
by a test context referring the module using a <<Usage>> dependency.

« TestContexts
TCon_extFile_arthmetic File extFile_arithmetic is the System Under Test.
wFilew
UsingExternalFile::extFile_arithrnetic
gllzages

The declaration of external (source and library) files and testing with TestConductor is
discussed in the chapter Black-Box Testing of External Files and Libraries at page 216.

39

Using Parts

Only global (i.e. top-level) objects may be tested. There will be no support for testing parts
of composite classes.

TestArchitectures with multiple SUT classes or objects

TestArchitectures with more than one SUT class or object can simply be created by first
creating a TestArchitecture for one of the classes or objects to be tested and successively
adding further SUT instances. TestArchitecture Update can be used to automatically
complete the TestArchitecture with TestComponents and TestComponentObjects.

Creating TestArchitectures for more than one class or object will in general be an at least
partially manual task, since the SUT elements have to be connected accordingly and the
code generation scope has to be manually adapted according to the involved model
elements.

For black box TestArchitectures an iterative approach of TestArchitecture creation,
removal of TestComponents, addition of further SUT elements, appropriate connection of
SUT elements and TestArchitecture updates can easily performed using Rhapsody
modeling capabilities and the context menu helpers in the Rhapsody browser.

The testing cookbook provides examples e.g. answering the questions “How can I create a
test architecture with multiple SUT classes and/or instances?”, “How can I create a test
architecture for a Package with multiple classes?”.

Updating TestArchitectures

TestArchitecture creation generates an appropriate test environment for the SUT in its
state of development in a particular instant of time. When the model is further developed,
functions of the SUT and its environment may change their signature, interfaces and ports
may be added or deleted, relations may be added and deleted, etc. Whenever such
modifications took place, the TestArchitecture needs to be adapted to the modified model.
For existing TestArchitectures, TestConductor provides the possibility to automatically
update a TestArchitecture after changes have been made in the model. 'Update
TestArchitecture' follows the same rules as TestArchitecture creation and will complete the
existing TestArchitecture with appropriate TestComponents for added relations and update
TestComponents w.r.t. modified relations and interfaces of the SUT. Since
TestArchitecture avoids deleting model elements that may contain user changes — such as
e.g. existing operation bodies. Furthermore, TestArchitecture update will not affect the
scope selection in the code generation component. Hence, it might become necessary to
manually adapt the scope selection and to manually delete artifacts in the TestArchitecture,
which have become superfluous due to modifications of the model. It is in general
recommended to update the TestArchitecture after modifications of the SUT in order to
keep track of the changes in the TestArchitecture.

The following example illustrates TestArchitecture update:

40

wlnterfaces wlnterfacew
11 2
&) void & o) void

12

There is a class A that contains a P1 with a required Interface 11 and a provided Interface
12. The interface I1 specifies one operation f() that takes no arguments and has no return
type, and interface 12 specifies an operation g() also without arguments and return type.
When selecting class A as the SUT, TestConductor creates the following TestArchitecture
for it:

u TestContexts
TCon_A

1 «SUT»
s A

=
L

F1

F1

1
1 mTEStCnmpnnentllﬁance.TestEnmpnnentx-

itsTC at P1 of ATC at P1 of A

In the generated TestArchitecture, one TestComponent is created containg an appropriate
port P1 such that the instance of the TestComponent can be linked to the Port P1 of the
SUT instance itsA. Now suppose you do some changes on the SUT class A. For instance,
we can add an additional Port P2 with a required Interface 12 to A, and we add a new
operation h to the Interface I1:

41

zlnterfaces xlnterfaces
1 [2
& o) void
& i void
=ERT
A [1
=
L
! [2
B 2
I

Because of these design changes, the previously generated TestArchitecture is not
complete any more, In order to get again a complete TestArchitecture TestConductor
provides the capability to update an existing TestArchitecture. To do this, select the
TestContext that should be updated and select “Update TestArchitecture”:

o — Create S0 TestCase

aTestContexts Create Flowchart TestCase
TCon_A Create Code TestCase
Create Statechart TestCasa
et A Buikd TestContext
Exsoute TestContext
™ | Update TestArchitecture
p2— P Apply ATG...
m] =]
P1
1 cTE.tEnmpnnemlrEéme,TErEnmpnueml
itsTC at P1 of ATC at P1 of A
(m 3 O

After applying “Update TestArchitecture”, you get the following updated
TestArchitecture:

42

u TestContexts
TCon_A
1 wSUTw
1 | g
F1 P2
P =,
1 «TestComponentinstance, TestCompons 1 «TestComponentinstance, TestCompone
itsTC_at P1_of ATC at P1_of A itsTC_at_P2_of ATC at P2 _of A

To update the TestArchitecture accordingly, TestConductor did the following
modifications to the existing TestArchitecture:

1. A second TestComponent is created that is connected to the new Port P2 of the SUT
instance.

2. Since an additional operation was specified for Interface 12, an additional operation h
is added to the TestComponent connected to port P1.

= 3 TestComponents
- TC_at_P1_of A
=@ Operations
&
& h

After these modifications have been made by TestConductor, the TestArchitecture is
complete again.

Up-to-date check for TestArchitectures

TestConductor offers a context menu entry on TestContext “Check if TestArchitecture is
up-to-date”. Using this context menu item it can be checked whether “Update
TestArchitecture” will apply changes to an existing TestArchitecture or if the
TestArchitecture is up-to-date.

TestArchitecures for MicroC Models

TestConductor supports testing of MicroC models with a specifically taylored
TestArchitecture generation.

43

Per default TestConductor restricts code generation component for the generated
TestArchitecture such that all design packages but only the TestPackage containing the
architecture belong to its scope. Setting property
TestConductor::Settings::CreateTestArchitectureMode to ‘Advanced’ allows inheritance of
overridden properties from an already existing configuration

Since code generation for MicroC does not regard initialization settings of the
configuration, i.e. no initial instance selection, TestConductor explicitly creates an object
of the test context.

The MicroC profile provides two different initialization modes: ‘CompileTime’ and
‘RunTime’. While ‘RunTime’ is like normal initialization for C models which requires no
specific support by TestConductor, ‘CompileTime’ influences a set of model elements,
such as e.g. accessability of associations. In particular, this affects the generated
initializers of TestContexts for objects (cf. TestArchitecture creation “Using Objects”,
page 38). Consequently, TestArchitectures generated for initialization mode ‘RunTime’ are
in general not compilable with ‘CompileTime’ initialization and vice versa.

Note, that this also affects the initializer of TestComponents generated for statechart
TestCases (cf. TestCase Definition with Statecharts, page 54 ff). It is, hence, strictly
recommended to check the initialization mode defined for the project before creation of a
TestArchitecture and to check the initialization mode defined for the referenced
configuration before creation of the first statechart TestCase.

TestArchitecures for Code centric Models

For code centric Rhapsody models, the source code of the SUT is compiled to a library
and the executable with the test harness is linking this library. The code of the SUT library
is not instrumented with animation code and it is built with the code centric property
settings while the test harness contains animation instrumentation.

For the SUT library, it is possible to chose an already existing library of the project or
TestConductor can automatically create a new library CG Component.

The TestConductor sample “CppCarRadio” demonstrates testing of a code centric model.
For the next steps, please open the sample located in folder
“Samples\CppSamples\TestConductor\CppCarRadio”, right click class “Radio” and select
“Create TestArchitecture”. A dialog appears with the options to select an existing library
CG Configuration or to create a new library CG Component and Configuration for the
SUT. If the existing CG Configuration “RadioLib::RadioDebug” is selected, a
TestArchitecture is created with another CG Component and Configuration for the
generation and compilation of the test harness. This CG Configuration has some properties
enabled which are usually disabled in the code centric profile, for example properties
“CG::Relation:: AddGenerate” and “CG::Relation::SetGenerate” are enabled and
“CG::Configuration::MainGenerationScheme” is set to “Full”. The scope of the newly
created CG Component contains only the test harness and it has a “Usage” dependency to
the CG Component of the SUT, making sure the needed header files and the library of the
SUT can be found.

If the user selects to create a new CG Component for the SUT library, then TestConductor
creates two CG Components in the TestArchitecture: First a library CG Component
“libSUT” with the scope set to the SUT class and its associations and the default property
settings of the project and second an executable CG Component for the test harness.

44

After creating the TestArchitecture, the user should revise the settings of the newly created
CG Components and Configurations. It might be necessary for example to add more
model elements to the scope of the CG Components or to modify the options for the
“Additional Sources”, “Include Path” etc. The user has to build the SUT library; for the
CG Configuration “RadioLib::RadioDebug” this can be done by executing the shell script
“buildLib.sh” (located on the project folder) in a cygwin shell. The executable of the test
harness can be build using the TestConductor menu functions “Build TestCase”, “Build
TestContext” or “Build TestPackage”.

The TestArchitecture for code centric models can be used the same way as
TestArchitectures for non code centric models, with some restrictions because of the not
animated SUT (internal communication of the SUT cannot be observed).

Unit testing of AUTOSAR Software Components

Testing of AUTOSAR Software Components is supported only for AssertionBased testing
mode.

TestConductor.h, TestConductor_C.h and TestConductor_C.c,
TestConductor.jar, TestConductor.ads and TestConductor.adb

Since Rhapsody 7.1 the testing profile require the test context, test components, and test
component instances to include the TestConductor header file by setting property
CPP_CG.Class.ImpInclude to TestingConductor.h. Additionally, TestConductor
adds the path '$ (OMROOT) /. ./TestConductor' to the include-path of the code-
generation component when creating a test architecture.

General l Scupe] Descriptinn] Helatiu:uns] Tags] F'ru:-perties]

M arne; |TF'kg_EashH eqgizter_Comp

L]
Sterentype: | ﬂ E@

Drirechany: |TF'kg_EashH eqgister_Comp

Libraries: |

-
|
Additional 5ources: | J
|
]

Standard Headers: |

Include Path: $[0MROOT)/../T estConductar
Type
(" Library ™ Executable ¢ Other
Locate | 0K | |

45

To provide an adequate assertion support for Rhapsody in C, a similar header file is
provided and the testing profile was extended, such that test context, test components, and
test component instances automatically include an appropriate TestConductor_C.h
header by setting property C CG.Class.ImpInclude to TestConductor_C.h.In
contrast to the Rhapsody in C++ solution, for Rhapsody in C also an C-Implementation
file was provided, which is linked only once.

= C_CG
=l Class
ImpIncludes TestConduckor_C.h
= CPP_LG
=l Class

ImpIncludes TeskConduckor.b

For Java, the class “org.btc. TestConductor. TestConductor” is added as specification
include for TestContext and TestComponents.

=l 1AVMA_CG

=l Class
DescriptionTemplate [[* $Description]]O0O[[* @author A
Speclnciudes arg.btc, TestConductor, TestConductor

For Ada, the package “TestConductor” is made visible by adding an appropriate “with”
clause to the implementation of test contexts and test components.

-/ Ada_CG
-l Class
ImplementationProlog with TestConductor;

Generate and Build the Test Context

After generation of the new test context you should check whether it is complete and
consistent. Therefore you should generate und build the test context to get information
about potential compile or link warning or errors.

* Right-click on the test context TCon CashRegister and select Build
TestContext from the context menu.

46

EIE TestPadkag Create SO TestCase
EED TPhg_CashRegister Create Flowchan TestCase

: Create Code TestCase
[+ | Components
! _j *Etc:: L Create Statechart TestCase
Iy ' S=Tompane Update TestContext

-9 TestComesns

Buikd TestContesxt

Efj:} TCon_CashRegistes ER——— :
|Tl Links Update TestArchi
G-y SUTs Apphy ATG...
[+ kg Test Contest Diagrams i
‘ TestComponentinstances :FRE
q‘D TestConfigurations @

If the generate, compile and link procedure are resulting in an executable you are able to
execute it.

Test Case Definition

Now test cases for the generated test context can be defined. TestConductor provides four
possible means to define test cases:

* Test case definition with pure code
* Test case definition via flow charts (only in C/C++)

* Test case definition via statecharts
* Test case definition via sequence diagrams

Test Case Definition with Code

One of the most used means to test units today is writing test cases in the same language
than the application is written. In the C/C++/Java/Ada domain, often the complete test
environment and also the test cases are written in C/C++/Java/Ada with the goal of
functional or coverage testing.

With Rhapsody and TestConductor it is also possible to write test cases manually, because
test cases are stereotyped operations of a test context.

Define a Code Test Case

The creation of a new test case is nearly the same than creation of a new operation:

* Right-click on the test context TCon CashRegister and select Create Code
TestCase

47

E-Ef TestPackages
= TPkg_CashRegister
D Components

i

= &g Test Contesxt D
: e i—n Ctructure
‘ TestComponen
[y, TestConfigurat

Name the new test case “tc_code”

= £ TestContexts
= TCon_CashReqister
L Links
gl SUTs
[+-k Test Context Diagrams
Elxv TestCases

] ¥ - codel)
‘, TestComponentInstances
[+-*%y, TestConfigurations

Open the Features dialog of the new test case and enter the code into the

implementation tab.

Test Case : tc_code in TCon_CashRegister

EE|

Generall Description Implementation |.f1‘n.rguments| Helationsl Tags I Properliesl

Ivoid to_code(]

RTC AZZERT NAME ("check 1.17,

RTC_ASSERT NAME ("check 1.27,

4] |

Lucatel K | Apply ||

il=itsCashRegister.isNoMoreProducts() ;

i1==1):

itsCashRegister.,addProduct (new Product (1234, "apple™,100)) ;
iZ=itsCashRegister.isMoMoreProductsi() ;

HE e BN

s

48

The objective of the test case is to verify whether the function addProduct correctly adds
a product to the bill list (realized by the ordered association itsProduct).

First, the test case checks whether the bill list is empty. If not, the operation
isNoMoreProduct returns FALSE. In this case the macro RTC_ASSERT NAME
(“check 1.1”, il=1) returns a FAILED to TestConductor. Otherwise the result of the
RTC ASSERT NAME macro is PASSED. In the next step a product “apple” is added. At
the end the bill list is checked again.

Note: This test case is using two attributes 11 and i2 of type int. Both attributes have
to be defined within the test context TCon CashRegister.

Note: TestConductor provides several RTC ASSERT macro types, which can be used to
define assertions within test cases. A detailed description of these macros can be
found in the chapter TestConductor Assert Macro on page 25/.

Execute a Code Test Case
Now you are able to execute the test case by doing following steps:

* Right-click on the test case “tc_code” and select Build TestCase from the context
menu

* Right-click on the test case “tc_code” and select Execute TestCase from the
context menu

2l x
DR - h
MNarme Status File,/Tteration Line/Progress
- ¥, tc_rcode) PASSED
) check_1.1 @ PaSSED TCon_CashReqgister.cpp 53
5] check_1.2) PASSED TCon_CashRegister.cpp 56

The test execution window shows the result of the checked assertions. Both are PASSED
meaning that the tested behavior is ok.

Further information about test execution and the related results is described under chapter
Test Execution on page 75.

Failure Analysis in CodeTest Cases

TestConductor lists in the execution dialog all executed assertions. To display the
corresponding assertion, select in the execution dialog the item name in the column Name
and press the button Show Assertion.

49

Test Case : Code_btc_0in TCon_CashRegister

Generall Description Implementation |.ﬁ.rguments Helatiu:unsl Tags I Properties

|rwoid Code_te_0[)

il=itsCashRegister. isNoMoreProducts () ; -~
RTC ASSERT WAME ("check 1.1", il==1);

itsCashRegister .addProduct (new Product (1234, "apple™, 100)) ;
id=itsCashRegister. isNoMoreProducts|() ;
RTC ASSERT NAME ("check 1.2", iZ==0);

-
1| | 3

Lucatt:l Ok | Apply ||

Further information about failure analysis can be found in chapter Failure Analysis on
page 224.

Testing reactive behavior with Code Test Cases

Since code test cases are basically operations of a test context, testing reactive behavior,
1.e. reaction to events, can not be done without modifications to the test context.
Operations can't wait on events so please make the TextContext an active object and hence
a separate thread. In this case, the thread executing the test context can be delayed unless
the SUT has reacted to an event.

¢ Example code in C++:
itsClass 0.GEN(evX());
OXFTDelay (1000) ;
RTC_ASSERT NAME (“reaction”,itsClass_0.IS IN(reaction state));

¢ Example code in C:
RiCGEN (& (me->itsClass_0),evX());
RiCOXFDelay (1000) ;
RiCIS IN(&(me->itsClass 0),reaction state);

¢ Example code in Java:
itsStopWatch.gen (new evPressKey(l));

try {

wait (4000) ;
} catch (Exception e)
{1

TestConductor.ASSERT NAME ("Check state of
stopwatch",itsStopWatch.isIn (ROOT.Running)) ;

50

Test Case Definition with Flow Charts

A graphical way to describe test cases is by using flow charts. Since test cases are special
operations of a test context you can use flow charts. Flow charts can be used to define the
behavior of operations with Rhapsody.

Defining test cases by flow charts is available for C++ and C only.

Define a Flow Chart Test Case

¢ Right-click on the test context TCon CashRegister and select Create
FlowChart TestCase

E1-Ef TestPackages

-, TPka_CashRegister
{:] Components
‘_i TestComponents

-k Test Context [Build TestContest

R kg Structwre ¢ Execute TestContext
‘ TestCompanen Update TestArchitecturs
“.I TestConfiguwrats APRly ATG...

* Name the new test case “tc_flow_chart”
e Draw the following flow chart

51

FlowchartOfTe_flow_chart] «FlowCharts

(i1=this-=itsCashRegister.isMoMareProducts();)

RTC_ASSERT _MAME
("check_2.1, ®
Initialization failed", f

[elze]

=

[i1==1]

this-=itsCashRegister addProductinew
Product{1234 "apple" 1007,

¥

i2=this-=itsCashRegister.isMoMoreProducts();
RTC_ASSERT MAME("check 2.2, Product
succesfully added", 2==0);

The objective of the test case is the same as used in the code test case above.

First, the test case checks whether the bill list is empty. If not, the operation
isNoMoreProduct returns FALSE. In this case the macro RTC_ASSERT NAME
(“check 2.1, Initialization failed”, O0) returnsa FAILED to
TestConductor. In the next step a product “apple” is added. At the end the bill list is
checked again

Execute a Flow Chart Test Case
Now you are be able to execute the test case by doing following steps:
* Right-click on the test case “tc_flow chart” and select Build TestCase from the
context menu

* Right-click on the test case “tc_flow_chart” and select Execute TestCase from the
context menu

52

| x|
DROE N 1

MNarme Status File/Theration Line/Progress
- ¥, FC_tc D @ PassED
theck_2.... (2 PASSED TCon_CashRegister.cpp 68

The test execution dialog shows the result of the defined assertions. The assertion

“check 2.2, Product successfully added” passed the test, which means that the tested
behavior is ok. Other than in the code test case here you can only see one assertion in the
execution dialog. This is due to the condition connector used in the flow chart. Only when
the condition [i1==1] is false, the assertion “check 2.1, Initialization failed” is
executed.

Further information about test execution and the related results is described under chapter
Test Execution on page 75.

Failure Analysis in Flow Chart Test Cases

TestConductor lists in the execution dialog all executed assertions. To display the
corresponding assertion, select in the execution dialog the item name in the column Name
and press the button Show Assertion.

Action : action_2 in FlowchartOFFC_tc_0D } I E|

General | Deacriptiunl Helatiu:unsl Tags I Properties

Mame: Iau:tiu:un_2 L |
Stereatype: I j r-g_-hl ﬂ'\r}l
Action

iZ=this->itsCashRegister. isNoMoreProducts() ; =] T Overmidden

RTC_ASRERT MNAME ("check 2.2, Product succesfully added™, iZ==0);

o

Locate | 1] 4 | Apply | |

Further information about failure analysis can be found in chapter Failure Analysis on
page 224.

Testing reactive behavior with Flow Chart Test Cases

53

Since flow chart test cases are basically operations of a test context, testing reactive
behavior, i.e. reaction to events, can not be done without modifications to the test context.
Operations can themselves not wait on events. Thus, the test context has to be active, i.e.
must run in a thread different form the thread executing the SUT. In this case, the thread
executing the test context can be delayed unless the SUT has reacted to an event.

¢ Example code in C++:
itsClass 0.GEN(evX());
OXFTDelay (1000) ;
RTC_ ASSERT NAME (“reaction”,itsClass_0.IS IN(reaction_ state));

¢ Example code in C:
RiCGEN (& (me->itsClass 0),evX());
RiCOXFDelay (1000) ;
RiCIS IN(&(me->itsClass_0),reaction state);

¢ Example code in Java:
itsStopWatch.gen (new evPressKey (1)) ;

try {
wait (4000);
} catch (Exception e)

{1}

TestConductor.ASSERT NAME ("Check state of
stopwatch",itsStopWatch.isIn (ROOT.Running)) ;

TestCase Definition with Statecharts

Test cases can alternatively be defined using statecharts. Due to their ability to wait on
timeouts, statechart test cases are particularly suited for testing reactive behavior. In order
to separate test case behavior from possible reactive behavior of the test context, statechart
test cases are defined using specialized test components, which are then dynamically
instantiated for test execution.

Statechart test cases are comprised of the following model elements:
¢ aTestCase, i.e. basically an operation of the test context.
¢ a TestComponent owning the statechart defining the test case behavior.

¢ adependency of the test case on the test component. This dependency is
stereotyped <<StatechartTestCase>>.

This chapter gives a short overview about the usage of statechart test cases. It describes:
¢ How to define a simple statechart test case.
¢ How the model is populated for executing a statechart test case.

¢ How statechart test cases can be executed.

54

Define a Statechart Test Case

¢ Right-click on the test context TCon CashRegister and select Create

Statechart TestCase

E]-E§ TestPackages

El 7y TPko_CashRegister

D ‘Compomnents

j TestComponents

[=-#59 TestComes

EI& TCaon_CashRegist=

[#]-+L Links
- SUTs
£l &Y Test Context C
- L Stucure_
‘ TestComponer
q:D TestConfigurat

Create S0 TestCasea
Create Flowchart TestCase
Creste Code TestCase
Creste Statechart TestCass

Update TestContext
Build TestContext
Execute TestContest
Update TestArchitecture
Apphy ATG...

Creation of a statechart test case adds a test case to the test context. This test case has a
dependency on a newly created test component owning the statechart. The test component
has a directed association to the test context, which can be used to refer to parts, variables
and operations of the test context. Upon execution, the statechart test case dynamically
instantiates the test component, initailizes the association and starts statechart execution.

Furthermore, the test context needs to be populated with a rtc_init() and a rtc_exit()
operation which are invoked by the statechart. This population is initiated by “Update
TestCase”, “Update TestContext”, and “Update TestPackage”, respectively.

The following figure shows the browser after statechart test case creation:

55

EI"'E;. TPkg_CashRegister o
D Components

El[i TestComponents
TC_at_hw_of CashRegister
TC_for_itsCountedProduct_of CashRegister
TC_for_itsProduct_of CashRegister
TCSC tc 0

E| |_| Assodistion Ends
tely sTCon

a Orperations

[=-#}# TCon_CashRegister
G- Awibutes
[~ Links
. a Crperations
. M, SUTs
. ﬁ—g Test Contest Diagrams

------ _‘ «StatechanTestCases TCSC e 0
‘ TestComponentl nstamces

. “‘ID TestConfigurations

Name the new test case “tc_statechart”
Draw the following statechart

56

MRsTCon-=re_lnk)
MRsT Corn-=-geiisCashReglsier-=EEN ausan))
shale 7

L]

tm(500]

[
|

sk 4

JRTC_ASSERT _MAME['evEtan_recehed
ReTCon--getisCasnReglster =I5 _IN[acihe))

MsTCon-=-mc_exh[)

Execute a Statechart Test Case
Now you are be able to execute the test case by doing following steps:
* Right-click on the test case “tc_statechart” and select Update TestCase from the
context menu

* Right-click on the test case “tc_statechart” and select Build TestCase from the
context menu

* Right-click on the test case “tc_statechart” and select Execute TestCase from the
context men

A=
[’ =ﬁ§:h

MNarme Status File/tera... = Line/fProgress
-1¥, Code_tc_O © PASSED
Q evStart_received Q FaSSED TCon_4&.cpp 30

The test execution dialog shows the result of the defined assertions. The assertion
“evStart received” passed the test, which means that the tested behavior is ok.

57

Further information about test execution and the related results is described under chapter
Test Execution on page 735.

Failure Analysis in Statechart Test Cases

TestConductor lists in the execution dialog all executed assertions. To display the
corresponding assertion, select in the execution dialog the item name in the column Name
and press the button Show Assertion.

Further information about failure analysis can be found in chapter Failure Analysis on
page 224.

Test Case Definition with Sequence Diagrams

Another option to define test cases is by using sequence diagrams. In the context of the
Rhapsody Testing Profile such sequence diagrams are stereotyped as fest scenarios (new
term: TestScenarios). Test scenarios play a dominant role in the TestConductor test
process. They are the graphical means of specifying and defining the tests, and enable
TestConductor to visualize design flaws.

This chapter gives a short overview about the usage of sequence diagram based test cases.
It describes:

* How to define a simple sequence diagram test case

* How the generation of driver and sub operation works (see also chapter Model
Population on page 62)

* How sequence diagram test cases can be executed

Detailed information regarding the usage of the powerful features of sequence diagram
test cases are described in chapter Advanced Test Definition on page /57 ff.

Define a Sequence Diagram Test Case

Driving the SUT using Test Components

¢ Right-click on the test context TCon CashRegister and select Create SD
TestCase

58

3£} TestPackages
g TPka CashRegister
D Components
3 TestComponsents
=49 TestContests
El&; TCon_CashRiegistes

Ly Links

gl SUTs

E“i TestContet C pold TectContent

L el Stuctire ! Eyeoute TestContest
‘ TestComponer Update TestArchitechse
-y, TestConfigurat Apply ATG

Note: TestConductor generates a new test case “SD_tc_0()” with a dependency

“SD _tc 0” to a newly generated test scenario “SDTestScenario 0.

Egi TestZankexts
Eﬁi TCon_CashRegister
- Attribukes
Ly Links
;‘ SUTs
[&g Test Context Diagrams
|_::_|---x,_.- TestCases

“;.. kc_activity_diagrarn)

“;.. kc_codel)

“;.. kc_Flows_chart()

“;.. kc_sequence_diagram()
Eﬂ---‘. TestZomponentInstances
[y, TestConfigurations
|'_—'|---___: Te:stScenari-:us

SDTestacenario_0

i

[+

* Rename the new test case to “tc_SimpleStart”
* Rename the new test scenario to “SDSimpleStart”

The generated test scenario looks like the following diagram. It contains lifelines for each
SUT and test component object defined in the test architecture.

aTestScenarion

SDTestScenarin 0]
eSlUT»

TCon_CashRegis
ter.itsCashRegist
er:CashRegister

TCon_CashRegister.
itsTC_for_itsProduct
TC_for_itsProduct

TCon_CashRegister.itsTC
_for_itsCountedProduct:T
C_for_itsCountedProduct

TCon_CashRe
gister.itsTC_at
e TC at b

59

* Remove the lifelines TCon CashRegister.itsTC For itsProduct and
TCon CashRegister.itsTC for itsCountedProduct from the view,
because these lifelines are not used in the following test scenario

* Draw the following messages into the test scenario

sl
TCaon_CashRegis TCon_CashRe
ter.itsCashRegist gister.itsTC_at
er.CashRegister _hwe TC &t b

| evtart() |

startzession()

show(aMsy = OK)

In this test scenario the test component TCon CashRegister.itsTC at hw is driving
the SUT with the message evStart (). The expected result is the message shown below
show ().

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

The scenario describes the normal way in which objects communicates among each other.
Messages from an environment line are only necessary when messages have to be sent
from the system boundary (e.g. an actor is sending an event to an object of the system).

Driving the SUT using ENV

If you are testing an animated application, inputs can also originate from the ENV life line
in a sequence diagram. To define a sequence diagram test case in such a manner you have
to draw a slightly different test scenario.

* Create a new test case as described above
* Rename the new test case to “tc_SimpleStartENV”
* Rename the new test scenario to “SDSimpleStartENV”

60

Remove the lifelines TCon CashRegister.itsTC_ For itsProduct and
TCon CashRegister.itsTC for itsCountedProduct from view,
because these lifelines are not used in the following test scenario

Add an ENV line to the test scenario
Draw the following messages into the test scenario

aalTs
EMNY TCon_CashRegis TCon_CashRe
ter.itsCashRegist gister.itsTC at
er:CashHegister _hwTC at hw

evatan() |

/

|

|

| |
startSession() |
|

|

|

| showlahldsg = QK]

—

AR LR,

Execute a Sequence Diagram Test Case
Now you are be able to execute the test case by doing following steps:

Right-click on the test case “tc_SimpleStart” and select Update TestCase from the
context menu

Right-click on the test case “tc_SimpleStart” and select Build TestCase from the
context menu

Right-click on the test case “tc_SimpleStart” and select Execute TestCase from
the context menu — Alternatively you can right-click on test scenario to
“SDSimpleStart” and select “Exceute TestCase of TestScenario” from the context
menu.

The test is executed, and you can see the results in the execution window.

Alx
DROE - -1
Marne Status File/Theration Line/Progress
- ¥, t_sequence_diagram €3 FAILED
By sD_tc_o @ FaILED 1 79% (34

61

Failure Analysis in Sequence Diagram Test Cases
The execution of the test case failed. To find out why you can do the following:
Select the item “SD_tc 0 in the execution dialog and double-click the item. Alternatively,
select the item “SD tc 0 and select “Show as SD” from the context menu.

With Show as SD TestConductor has generated a new color coded sequence diagram
which shows the found failure.

TCon_CashReqist TCon_CashReqg
eritsCashReqgiste IsteritsTC_at_h
r:CashReqister wi TC at by

| evStart]) |

start=ession)) |

show(alsg=Ready): Dperatiim Zall - In Parameter values do not match.
show(allsg=0K)

il

-
|

In this case the argument of the show() message sent by the SUT has a different value than
expected. The expected argument value is “aMsg=0K” while the real observed value is
“aMsg=Ready”. The reason for the problem is that we specified an incorrect test scenario
which must be corrected now.

You can change the argument from “OK” to “Ready” in the test scenario
“SDSimpleStart”. Then again perform the steps described above.

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

Further information about test execution and the related results is described in chapter Test
Execution on page 75.

Further information about failure analysis can be found in chapter Failure Analysis on
page 224.

Model Population — Create Driver Operations and Stub Operations

Whenever test components are used to drive input messages of the SUT or to be forced to
return a pre-defined value of an operation call to the test component users have to provide
driver or stub operations for test components.

By using sequence diagram test cases TestConductor automates the generation of driver
operations and stub operations. Simply by choosing the context menu Update TestCase
on test case level, by choosing the context menu Update TestContext on test context
level, or by choosing the context menu Update TestPackage on test package level the

62

work is done. Choosing one of these menu entries starts the so-called “model population”
process of TestConductor. It analyses each defined sequence diagram instance and the
linked test scenarios to generate necessary driver and stub operations for the test
components.

Driver Operations

Driver operations (DriverOperations) are created for any message going from a test
component to the SUT, except for messages carrying the tag RTC Monitor, or messages
starting at an instance line with the tag RTC_Monitor. In this case TestConductor assumes
the message should not be driven. Driver operations will be generated only for messages
from sequence diagrams referred by a sequence diagram instance with the mode “driver
and monitor”.

For example look into the generated driver operation of the test case “tc_SimpleStart™:

x|
Driver Operation : tc_sequence_diagram_evStart_1 in TC_at_hw alz
Ertite Modsl view ~ | ¥ F | —_— e e ———————————————
5 o CasRmgter General | Deseription Implementation | Arguments | Relations | Tags | Propetties
(L compenents [void to_sequence_digram_evStar_1[)
{21 obiect Madel Diagrams
(1 Packages Tt =
{20 Profilss Driver Operation generated by TestConductor
(11 Sequence Diagrams
B-C3 TestPackages Test Case ! tc sequence diagram
=% TPka_CashRegister Message @ message 0
(12 Components =
El-{i TestComponents The Driver Initielisation Code contains the value of the
=] »\i TC_at_hw message tag TestBehavier: iRTC MsgInfo:iRTC DriverInilCods,
= DriverOperatians if the tag value is not empty. Otherwise, the Driver
=@ te_sequence_diagram_swStark_1() Initialisztion Code is eutomatically genezated.
*+) Dependencies
2 Operations The Driver Czll Code contains the value of the
-0 Ports message tag TestBehavier: iRTC MsgInfo:iRTC Driverctalllods,
P Superdlasses if the tag value is not empty. Otkherwise, the Driver i
H- TC_for_itsCountedProduct €all Code is automatically generated.
1. TC_For_itsProduct e e R PR R Y
-9 TestContexts
=149 Tcon_CashRegister A
- Attributes 47 Driver Initizlisation Code:
[y Links 174
b 5UTs
[Test Context Diagrams Y
%y TestCases 4/ Driver Call tode:
% te_activity _diagram() W
%, tc_code()
% to_flow_chart() OUT_PORT (hw) ->GEN (evStart (]]
. B-% to_ssquence_diagram() _l;l
@ TestComponentinstances 4 3
-y, TestConfigurations
=By Testscenarios Locaie | 0K | Apply
-y, SDTestScenario_0

TestConductor analyzed the given test architecture, the ports, and the interfaces, and then
TestConductor generated a new driver operation for the test component TC_at hw called
tc_SimpleStart evStart 1 ().The implementation tab of this operation shows the
generated code. Beside some comments there is the code line

OUT_PORT (hw) ->GEN (evStart ()) ;

This implementation realizes the sending of the message evStart () from the
TestComponentInstance TCon CashRegister.itsTC at hw through the port hw
to the SUT. During test execution TestConductor will call the driver operation
tc_SimpleStart evStart 1 () which in turn generates the specified input event
evStart () using the port connection (hw).

The name of the driver operation is the concatenation of the name of the test case, “ ”, the
name of the original operation, “ ” and a number to create a unique name. A comment is
generated into the code of the driver operation that contains the identifier of the message

63

and the name of the test case for which the driver operation was generated. This allows the
user to identify the correct driver operation if he wants to edit it.

In the context of the model-population, the identifier of a message is the value of the tag
TestBehavior::RTC MsgInfo::RTC MsgId. TestConductor generates such an
identifier for a message when needed, using the naming scheme

'message <unique number>'.

The visibility of the driver operation will be public, the property
CG.Operation.AnimAllowInvocation of this operation will be set to ”A11” to make
sure this operation can be invoked by TestConductor.

The body of the driver operation consists of a call of the original operation on the SUT
(either on the destination instance itself or via a port, this is derived from the test context).

The values of any input argument for the driven operation call is derived from the
specification in the sequence diagram, the specified return-value(if existent) and the
specified output argument values are stored in local variables. TestConductor makes sure
that the call is done on the correct instance of the SUT if multiple instances of the same
SUT class exist.

If the sequence diagram specifies that the returned value should be checked, the macro
RTC_ASSERT _SD_NAME is used to check if the returned value and the expected
returned value are equal. The same macro is used to check if out or in/out argument values
returned by the operation call are as specified in the sequence diagram. If any of these
checks fails the test case fails.

The values of parameters defined for the sequence diagram instance are propagated to the
driver operation this way: If any parameter is used in the argument value- or return value
specification of the operation that should be driven, then in the body of the driver
operation the argument-value or return-value is substituted with the value of the
parameter. A corresponding substitution is taken into account, if sequence diagram
parameter values are used as sequence diagram instance names.

For further information how to customize the driver operation please read the chapter User
Defined Driving Operation Calls at page 208.

Stub Operations

Typically stub operations (StubOperations) are used to return a special return value for an
operation call that is needed to test a special behavior of the SUT that depends on this
return value.

Stub operations are created for any operation call in the sequence diagram going from the
SUT to a test component if a return value (or an out value for an out or in/out argument) is
specified for this operation. TestConductor needs the ability to determine and control the
value returned by the operation. On the other hand there might be some calls to the same
operation without a specified return value or the operation is called by a test component on
a test component. Because of this TestConductor has to generate a different body for the
operation, but it must still be possible to call the original operation.

To show this in an example you have to do some model changes:

* Open the feature dialog of operation show () of class IDisplay in package
InterfacePkg

* Change the return type from void to bool

64

Primitive Operation : show in IDisplay) = |

General | Descriptionl Implementation | Arguments Helationsl Tags I Properties

Ibool show(char® abdzg)

M ame:

I

Stereatype: I j EIEI

“izibility: Public j

Type: Primitive Operation j [Template
Return:

¥ Use existing type

Type: Ibool j ﬁl

M adifier
lrl_ Yitual [~ Static [T Inline [~ Constant v Abstract ‘

Open the feature dialog of operation show () of the test component TC at hw
in package TPkg CashRegister 0

* Change the return type from void to bool

Primitive Operation : show in TC_at_hw * i =k |

General | Descriptionl Implementation | Arguments Helationsl Tags I Propertiesl

Ivoid show(char” aMzg)

Mame: Ishow LI
Stereotype: | j L | %l

Wigibility: Public J
Type: Primitive Operation = Template
Fieturn:

W Use existing type

= =

todifier
’7|7 Witual [T Static [T Inline [~ Constant [~ Abstract ‘

* Change the implementation of the operation show () from “return” to
“return true”.

Primitive Operation : show in TC_at_hw

=l

Gereral | Description Implementation | srgurments | Relations | Tags | Properties |

|bool showichar aksa)

DID [% % o6 o8 o6 o6 o6 o6 o ok o o K S S K K o o K o S ok K K K K K

o1 Tmplementation generasted by Testlonductor

oz

=k} This Ffunction body was sutomstically genersted to ensure tha
g the test component class is not abstract.

DID ot oot ot o
as

07 return true;

os

Define a return value false for the message show () in the test scenario
“SimpleStart”.

65

«SUTs

TCon_CashRegis
teritsCashRegist
er.CashRegister

startSession()

|fa|se=shnw[ah-’15g = 0K

TCon_CashRe
gister.itsTC_at
_hw TG at hw

evtart() |

* Choose Update TestCase from the context menu of test case “tc_SimpleStart”

589 Te

E=

=

=

shi_ontexts

Elf,"'J TCon_CashRegister

- aktributes

L Links

b SUTs

b Test Context Diagrams

» TestZases

7% tc_activity_diagrami)
A kc_codel)

-~ be_Flove_chark()

Re®E - cequence_diagrami)
‘ TestComponentInstances

o

[+ %y, TestConfigurations
[]E-'i-p TestScenarios

Features
Features in Mew Window

Add Mew

Search...
Search inside. ..
References. ..

Change to
Edit Test Case

Delete From Model

Build TestCase r!

Edit TestiZase SDInstances

Execute TestCase

The result of the update and model population process can be seen in the Rhapsody
browser (see following figure)

66

L—‘_I\i TestComponents
L——_I$ TC_at_hw
=-Eh DefaulkOperations
ﬁ; ariginal_show(char* aMsg)
=@ DriverOperations
ﬁ' ko_sequence_diagram_evSkart_10)
i B Operations
[#-=0 Ports
= StubbedOperations
LI showlchar* aMsg)
= StubOperations
ﬁ; ko_sequence_diagram_stub_show_1{char* aMsg)
-9 SuperClasses
L IDisplay

TestConductor has done some modifications within the test component TC_at hw.

e The operation show () has been renamed to original show (..) andis
stereotyped with DefaultOperation.

* Anew stub operation tc_SimpleStart stub show 1 () hasbeen
generated. The generated stub operation returns a value false needed for the test
case “tc_SimpleStart” .

Stub Operation : tc_sequence_diagram_stub_show_1 in TC_at_hw

Genelall Description Implamentation IArgumentsl Helationsl Tags I Propertiesl

Ibool te_sequence_diagram_stub zhow 1[char® abzg)

<

Jfff:(-f:(-ffff:(-f:(-ffff:(-f:(-ff:(-f:(-f:(-ff:(-f:(-f:(-ff:(-f:(-ffff:(-f:(-fffféf*ffif*f*fifiéf*fié

Stub Operation generated by Testlonductor

Test Case tc_sequence_diagram
Message Pomessage 1

The Stub Body Code contdins the walue of the

message tag TestBeharior: PRTC Maginfor:RTC StubBodyCode,
if the tag value is not empty. Otherwise, the Stub

Body Code iz zutomstically generated.

:(-ff:(-f:(-ffff:(-f:(-ffff:(-f:(-ff:(-f:(-f:(-ff:(-f:(-f:(-ff:(-f:(-ffff:(-f:(-fffféf*ffif*f*fifiéf*fif

return (bool) false:

| of

Locate |

ok | Apoiv ||

-

* Anew stubbed operation show () has been generated.

67

Stubbed Operation : show in TC_at_hw = ||

Generall Description [mplementation |Arguments| Helationsl Tags | Propertiesl

Ibool show(char® akdza)

P Rt e e e L R e e e -

Stubbed Operation generated by Testlonductor

e e

OM3tring guid = RTC ASK("GUID eSd5dfbco-9590-4ac3i-S4ef-cicfachbh9ol®)
if (guid == "GUID c849f7el-0bc0-4d8d-5d7c-Sh7512812879™) |
OM RETURN (tc_sequence diagram stub_show 1 (alMsg)):
i
ON_RETURN (original showialMsg))

=
“ | >

Lucatel 0K | Apply ||

The stubbed operation show () replaces the original operation show () and is called
always when the SUT calls the operation show () on the specified test component. This
operation immediately decides whether the original show message has to be called or if a
stubbed value shall be generated. This behaviour is realized on a per test case and on a per
message basis.

Note: Each message in a sequence diagram has a unique Rhapsody GUID. So
TestConductor is able to uniquely identify each message with in a sequence
diagram.

For further information how to customize the stub operation please read the chapter User
Defined Stub Operation Calls at page 213.

Creating test cases with the test case wizard

As an alternative to manually create test cases, one can also automatically create test cases
with the test case wizard.The test case wizard allows to automatically create test cases
based on existing

* Sequence Diagrams
* Operations and Event Receptions
* Requirements
In order to create a test cases based on an existing Sequence Diagram, do the following:

1. In the browser or in the sequence diagram editor, right click the sequence diagram
and select “Create TestCase...”. This opens the test case wizard dialog:

68

Create Test Case

Map instance lines to test architecture

Pleaze zelect test architecture for test casze:

Pleaze zelect test caze kind:

2. In the test case wizard dialog, all test architectures (i.e., all test contexts) that are
suitable to map the life lines of the existing sequence diagram to the life lines that
are available in the test architecture (i.e., the life lines of the SUT instances and
the life lines of the test component instances) are listed. A test architecture is
suitable, if

* All life lines of the existing sequence diagram can be mapped to life lines of SUT
instances or test component instances s.t. all specified messages can occur also
between the remapped life lines of the test architecture.

* Atleast one life line of the existing sequence diagram must belong to the same
class (or file/object) as one of the SUT instances of the test architecture. This rule
can be turned on/off by setting the property
“TestConductor.Settings.MapSDToTestArchitectureMode” to “weak”. By setting
this property to “weak”, no existence of a life line that has the same class as one of
the SUT classes is required any more. Only the specified messages must be
possible in the remapped life lines of the test architecture. This mode allows to
remap an existing sequence diagram also to test architectures that contain
completely disjoint classes but which have at least interfaces that are compatible.
The default value for this property is “strict”.

3. If no suitable test architecture is found, the list contains only the element.
<<new>>. When selecting <<new>>, a new dialog will open that lists all classes
of all life lines of the selected sequence diagram. In this dialog, one has to choose
one of the listed classes as the SUT class for the new test architecture. After
pressing ok, a new test architecture will be created for the selected SUT class.

4. As aresult, a new sequence diagram test case will be created that contains the
same messages as the original sequence diagram, but the life lines of the test
architecture.

69

Bl Sequence Diagram: Animated Scenario s... El

CashRagister | ProductDatebass Tarminal B! TestScenario: Animated Scenario selecting produ... [5]
A TiCon..CashRegister TC_Produciatabase| . TC_at bw.|
Animated Scenario selecting products) A
CashRegister FroduciDatabase Terminal Animatad Scenario selecling products e soenanse
TCon_CashRe [TCon_CashReqist | [TGon_Casn
| gister tsCashi eritsCashRegister RegisteritsT
| | [tm(100) at ROC egister CashR itsProduciDatabase | | C_al_fi_of_
(100} st ROOT.50

| evstant) F

I - ey

@;iaﬂﬂ | Startsaszion)

showiahisg = Ready) ' = Ready)
f T ™ amct 00 at ROC tri 100} &1 ROOT scananioAdding
| |
| evBajcoda(aCode = 12345) | ﬁ",m_de‘_'cfe ST

e . —

F':———'_'_ haemumnu:n(acode:h 2348)

TdentifProductiacode = 1 2345) E‘ |

getPraductisCona = 12345)

gelProduci(acade = 13345) addPrudud[andu:t=.a’wduclll]:

addProduct{aProduct = Praduct[1]) |
F | shewiablsg = Adding Lyghees) o

Showiasg = Adding Lychees) N = - . ~tmi100) 8t HOOT.E‘:SnaMr\dm,n-

¢ B »

In order to create a test cases based on an operation or an event reception, do the
following:

1. In the browser, select one of the operations or event receptions of a class (or
file/object) and select “Create TestCase...” from the context menu.

2. In the test case wizard dialog, all test architectures (i.e., all test contexts) that
contains a SUT instance of the class (or file/object) of the selected
operation/event reception are listed. Additionally, the element <<new>> is listed.
Furthermore, a dropdown box can be used to select the kind of test case one
wants to create. Depending of the selection of the test architecture and the test
case kind, a new test case is created and added to the selected test architecture.

When <<new>> is selected, a new test architecture for the class (or file/object) of
the selected operation is created.

Create Test Case

tap inztance lines to kest architecture

Flease zelect test architecture for test caze:
L NEWE

TCan [

Flease zelect test caze kind:

SO TestCaze W

S0 TestCaze

Code T]
Flawchart TestCaze

Statechart TestCaze

3. The created test case already contains a call to the selected operation with default
arguments. Additionally, a dummy assertion is created that can be refined in order
to check out values of the called operation.

70

In order to create a test cases based on a requirement, do the following:

1.

In the browser, select a requirement and select “Create TestCase...” from the
context menu.

In the test case wizard dialog, all test architectures (i.e., all test contexts) of the
model are listed. Additionally, the element <<new>> is listed. Furthermore, a
dropdown box can be used to select the kind of test case one wants to create.
Depending of the selection of the test architecture and the test case kind, a new
test case is created and added to the selected test architecture. When <<new>> is
selected, a new test architecture (a subsequent dialogs asks for the class for which
a new test architecture should be created) is created. Furthermore, the original
requirement for which the new test case has been created is linked as a test
objective to the test case.

71

Creating Sequence Diagram test cases from existing Scenarios
using an explicit instance mapping

Creating Sequence Diagram test cases from existing Scenarios can be done either fully automated
using the Test Case Wizard (page 68) or by explicitly providing a mapping of the classifiers of the
source scenario to classifiers in the test architecture for which the test case will be created.

When attempting to create a sequence diagram test using the case wizard, the test case wizard first
analyzes all existing test architectures for being suitable candidates for test case creation and offers the
suiting test architectures for selection as target for test case creation. Hence, if instances or messages in
the source scenario have no possible realization according to the automatic mapping algorithm, the
respective test architecture is not offered for selection. The algorithm provides no information why
certain test architectures aren't considered suitable for the particular scenario.

The heuristics of the mapping algorithm maps classifiers of the source scenario to 'compatible’ —
according to the chosen mapping strategy (weak or strict, cf. pages 68 ff. and 132 ff.) — classifiers in
the selected test architecture. The heuristics work pretty well for classifiers with port contracts. In
particular for classifiers engaged in only few communications or without port contracts, the heuristics
may produce not optimal results.

The test case wizard is only capable of an instance to instance mapping. Merging or splitting instance
lines — e.g. according to composite and part relations — is not supported by the test case wizard.

To overcome the drawbacks described above, creating sequence diagram test cases from existing
scenarios — optionally using an explicit instance mapping — has been introduced as alternative to the
test case wizard.

A sequence diagram test case from an existing scenario can be created by invoking 'Create
TestCase from Scenario'on the scenario.

For a user defined mapping and a determined test architecture, the test case is created in any case and a
detailed report provides feedback about the individual actions the algorithm performed for test case
creation and scenario mapping. If no mapping is active on invocation of 'Create TestCase

from Scenario'the resulting test case resembles the result of invoking the test case wizard with
the major difference that the test case is created in the target test architecture even though the test case
wizard considers the test architecture not suitable. The 'MappingReport' comment in the created test
case will contain detailed information regarding the successful steps and problems during creation and

mapping.
Mappings can define
* simple mappings of individual classifiers to classifiers,

» splitting instance lines of classifiers into a set of instance lines of particular classifiers — as
needed e.g. for mapping a composite to its parts,

* merging instance lines of a set of classifiers to one instance line of a particular classifier — as
e.g. used in mapping parts to its parent composite.

Once created mappings are part of the model (TestingPofile model element SDMapping) and can be
shared for further test case creations. Definition of mappings is described on page 73.

Mappings refer to the classifiers of instance lines. Mapping of individual messages is currently not
supported.

72

The work flow of sequence diagram test case creation for an existing scenario consists of the following
steps:

* Activation of the desired SDMapping. An SDMapping is activated by setting stereotype
<<ActiveSDMapping>> onthe SDMapping. At most one SDMapping must be
stereotyped at a time.

A dedicated helper 'Set as Active SDMapping' unsets the stereotype from all currently
stereotyped SDMappings and activates the selected one.

* The target test architecture is determined by setting one of its code generation configurations
active. The active code generation configuration must be stereotyped
<<TestingConfiguration>> or

<<AnimationBasedTestingConfiguration>> or by a stereotype inheriting from
one of them.

* Invocation of 'Create TestCase from Scenario'on asequence diagram or a
TestScenario.

The testing cookbook provides examples for reusing scenarios for test case creation.

Definition of mappings for sequence diagram test case creation from existing
scenarios

Testing profile model elements
* SDMapping,
* SDInstanceRealizationMapPair,
* SDInstanceRealizationSplit,
© SDInstanceRealizationSplitTarget,
* SDInstanceRealizationMerge,
© SDInstanceRealizationMergeOrigin
have been introduced for defining mappings for sequence diagram test case creation from scenarios.

These model elements have — depending on their meaning to the mapping — tags 'Origin' and
'Target' of type ModelElement?.

The top level element of each mapping is an SDMapping
SDMappings can consist of

* SDInstanceRealizationMapPair - simple mappings of individual classifiers to
classifiers, SDInstanceRealizationMapPair has two tags 'Origin'and 'Target' of
type ModelElement. Instance lines referring to 'Origin' shall be mapped to 'Target'.

*Classifier would be more appropriate, but for classifier, the selection dialog doesn't offer files and implicit
objects. Thus, to be able to pick also files and objects from the selection dialog for tags, Classifier is too
restrictive. Instead of restricting the selection, the defined SDMapping is strictly checked on application of the
mapping.

73

* SDInstanceRealizationSplit - splitting instance lines of into a set of instance
lines of particular classifiers. SDInstanceRealizationSplit hastag'Origin'for
defining, which Classifier shall be split and

© arbitrary many SDInstanceRealizationSplitTarget elements, each with a tag
'Target'. The set of SDInstanceRealizationSplitTarget elements belonging
toa SDInstanceRealizationSplit define the set of classifiers to which the
instance lines referring to 'Origin' classifier shall be split.

* SDInstanceRealizationMerge - merging instance lines of a set of classifiers to one
instance line of a particular classifier. SDInstanceRealizationMerge has atag
'Target' denoting the classifier for which the origins will be merged and

© arbitrary many SDInstanceRealizationMergeOrigin elements, each with a tag
'Origin'. The setof SDInstanceRealizationMergeOrigin elements belonging
toa SDInstanceRealizationMerge define the set of elements for which the
referring instance lines shall be merged to an instance line referring to 'Target' classifier.

SDMappings can be created in any package or TestPackage in the model, but it is recommended
to create SDMappings in the target test architecture to which the SDMapping maps classifiers of
scenarios.

SDMappings can be created using the context menu item “Add New->TestingProfile-
>SDMapping” on a package or TestPackage. According to the hierarchy of mapping elements,
SDInstanceRealizationMapPair, SDInstanceRealizationSplit,
SDInstanceRealizationMerge can be added to a SDMapping with the context menu item
“Add New->TestingProfile-> SDInstanceRealizationMapPair”,etc. ona
SDMapping.

Similarly, SDInstanceRealizationSplitTarget and
SDInstanceRealizationMergeOrigin can be added accordingly to
SDInstanceRealizationSplit and SDInstanceRealizationMerge, respectively.

The 'Origin'and 'Target' tags of the mapping elements can be set in the tags-tab of the features
dialog of the respective element: on clicking into the value entry field of the tag, a'...' button appears
on the right side of the entry field. Pressing that '..." button opens a'Select Value'dialog, which is
basically a mini model browser.

Unfortunately, the tag value is displayed only with its short name in the browser and in the entry field
in the features dialog — and the selected model element is not preselected when opening the selection
dialog again for a defined tag. This makes it difficult to verify correctness of an existing mapping or
even understand its meaning with only the information provided in the browser and in the features
dialog. In order to obtain information about the model paths of the selected classifiers in the mapping
tags, context menu item 'Update Description'can be invoked on SDMapping. This helper will
generate an information report for the mapping using model path names of the tag values and write the
report to the description of the SDMapping.

74

Test Execution

During test execution, TestConductor drives events, operation calls, and dataflows sent
from the test components, test context or environment to SUT objects, and monitors all
messages between objects, actors and environment as specified in the test cases. This
means that TestConductor automatically checks and reports whether the order of messages
sent and received corresponds to the real order in the running application. In addition,
TestConductor monitors the arguments of messages. Since TestConductor checks the
application behavior (against requirements) using animation mechanisms, you must
generate code for the test configuration with animation instrumentation switched on (at
least for test components). See the Rhapsody User Guide for detailed information on
animation settings.

Overview

TestConductor supports several kinds of execution modes

Execution of code test cases

Execution of flow chart test cases
Execution of statechart test cases
Execution of sequence diagram test cases
Execution of a test context

Execution of a test package

Batch mode execution

The test execution is visualized with an execution dialog. Depending on the type of test
cases the view and interaction possibilities of the execution dialog slightly differ.

Test Configuration

Prerequisite for each execution of an application is a defined Rhapsody code generation
configuration. This configuration must be compileable and linkable.

TestConductor supports test execution against different code generation configurations. In
a (valid) test architecture, located underneath the TestContext there is a
<<TestConfiguration>> dependency targeting a Rhapsody Configuration®. The algorithm
TestConductor uses to choose the appropriate configuration is as following:

’In assertion based test architectures this Rhapsody configuration is required to have the stereotype
<<TestingConfiguration>>.

75

* If the currently active configuration is located in the same component as the
configuration targeted by the <<TestConfiguration>> dependency of the
TestContext use the currently active configuration.

* Otherwise use the configuration targeted by the <<TestConfiguration>>
dependency (Default Testing Configuration) of the TestContext.

One can switch between the code generation configurations by switching the active
Rhapsody configuration from those configurations in the same component as the default
Testing Configuration.

Test Configuration for animation based testing

By using the automatic test architecture generation feature of TestConductor a new
component and a related configuration is automatically added to the model for each test
context. For example a component TCon_CashRegister Component and a configuration
“DefaultConfig” was generated automatically for the test context TCon_CashRegister.

=L TestPackages
EE.‘D TPka_CashR.eqister
=7 Components
EIE TCon_CashRegister_Component
=L Configurations
E% DefaultConfig
=1-[E] Hyperlinks
&) Edit Main File

Also the settings for the code generation are done.

76

Configuration : DefaultConfig in TCon_CashRegister_Component

21

Generall Description [nitialization I Settingsl Ehecksl Flelatin:-nsl Tags I F"rn:npertiesl

— Initial inztances

£ Ewplicit % Derived

-- RhapzoduFramewsark ;I
- TestConductorPkg
=- TPko_CazhRegister
I TC at_bw

- [] TC_far_itsCountedProduct J
-«] TC_far_itzProduct

i [W] TCon_CaszhRegister

[” Generate Code For Actors

Initializabion code

Lucatﬂl 1] 4 | Apply ||

Note: For test execution the instrumentation mode must be set to animation, because

TestConductor needs the animation information to observe the behavior of the test
context.

The animation mode is necessary for all elements around the SUT in the test context. In

order to perform (black box) production code testing the animation of the SUT can be
switched off. Thus, the test execution can be done in

White box mode
Black box mode

White box mode means that the test context and also the SUT classes are generated with

animation code, while in black box mode the SUT classes are generated without any
animation code information (production code).

White Box Testing

White box testing means that the internal behavior of the SUT can be observed. For

example the message startSession () can be observed in white box mode, because the
SUT was generated with animation information.

77

sDsimpleStart «TEestacenarios

«SUT»
TCon_CashRegister.its_CashRegister: TCon_CashRegister.itsTC_at_hw:
CashRegister TC_at_hw

| [
I evstart() l

el

startSession()

|
| show(aMsg = OK)

Build Test Context (White Box)

TestConductor supports the code generation for white box testing via enabling the
animation of the SUT class. To enable white box testing select the property
CPPCG::Class: :Animate of the SUT class CashRegister.

Class : CashRegister in CashRegisterPkg

General] Descriptiun] .-’-'-.ttril:uutes] Dperatinns] Forts] Helatinns] Tage Properties l
Wiew Al -
+ Ch L
+ | ATL
+ | COM
+ | CORBA
-l CPP_CG
=l Class
AdditionalBaseClasses
AdditionalMumberOFInstances
Animate %
BaseMurnberOfInstances
Declarationtodifier

Defaultyalue

MearrinbinnTemnlaka

CPP_CG:Class:Ammate S
The Animate property specifies whether animation code iz generated for an element. Y'ou can
gpecify your own animation function uzing the property CG:Aktribute::AnimS enalize0 peration.

The zemantics of the Animate property iz always in favor of the owner setlings:

* If a package Animate property iz zet to Cleared, all the claszes owned by the package are not
animated, regardless of the class Animate settings.

* If a clazs Animate property iz zet to Cleared, all the elements in the clazs [atributes, operations,
relationz, and g0 on) are naot animated.

* |f an operation Animate property iz zet to Cleared, all the argumentz are not animated.

* If the Animatedrguments property iz et to Cleared, all the arguments are not animated,

regardless of the specific argument Animate property zettings.
Default = Checked

Lucate| 0K | |

78

=9 TestContexts
= TCon_CashRegister
o atkriboces
L Lirks
o SUTs

& Test Context Diagrams

+]-[- [F

+- %, TestCase_simple_stan Features
+ ‘ TestComponentInstances Features in Mew wWindow
+)- Yy, TestConfigurations

- E—'ﬁ', TestScenatios Add New r
+- =y SDTestScenario_[Search
¥ SDTestScenario_L e
References. .,
Change to 3
Edit Test Case

Delete From Model

Edit TestCase SDInstances
Update TestCase

Execute TestCase [!

After switching the property you have to build the test case in order to get animated code.
The result of this process is an executable with animation code for the SUT object.
TestConductor will automatically recognize that the SUT shall be tested in white box
mode.

Production Code (Black Box) Testing

Production code or black box testing means that the internal behavior of the SUT can not
be observed by TestConductor. The objective is to test the interface behavior of a SUT.

Note: You can use the same test cases defined for white box testing. In case of black box
testing TestConductor ignores all messages which communicate between SUT
objects. Only the input and output messages are observed.

Build Test Context (Black Box for animation based testing mode)

Rhapsody supports the code generation for black box testing via disabling the animation
of the SUT class. To enable black box testing deselect the property
CPPCG: :Class: :Animate of the SUT class CashRegister.

79

Class : CashRegister in CashRegisterPkg

General] Descriptiun] .-’-'-.ttril:uutes] Dperatinns] Forts] Helatinns] Tage Properties l
Wiew Al -
+ Ch L
+ | ATL
+ | COM
+ | CORBA
-l CPP_CG
=l Class
AdditionalBaseClasses
AdditionalMumberOFInstances
Animate %
BaseMurnberOfInstances
Ceeclarskiontodifier

Defaultyalue

MearrinbinnTemnlaka

CPP_CG:Class:Ammate S
The Animate property specifies whether animation code iz generated for an element. Y'ou can
gpecify your own animation function uzing the property CG:Aktribute::AnimS enalize0 peration.
The zemantics of the Animate property iz always in favor of the owner setlings:

* If a package Animate property iz zet to Cleared, all the claszes owned by the package are not
animated, regardless of the class Animate settings.

* If a clazs Animate property iz zet to Cleared, all the elements in the clazs [atributes, operations,
relations, and so on) are naot animated.

* |f an operation Animate property iz get to Cleared, all the argumentz are not animated.

* If the Animatedrguments property iz 2et to Cleared, all the arguments are not animated,
regardlesz of the specific argument Animate property settings.

Default = Checked

Lucatt:| 0OK | |

80

=9 TestContexts
= TCon_CashRegister
o atkriboces
L Lirks
alb SUTs

& Test Context Diagrams

][]][

+- %, TestCase_simple_stan Features
+ ‘ TestComponentInstances Features in Mew wWindow
+)- Yy, TestConfigurations

& E—'ﬁ', TestScenatios Add New r
+-El SDTestScenario_0 Search
¥ SDTestScenario_L e
References. .,
Change to 3
Edit Test Case

Delete From Model

Edit TestCase SDInstances
Update TestCase

Execute TestCase [!

After switching the property you have to build the test case in order to get non animated
code for the SUT. The result of this process is an executable without animated SUT
objects. TestConductor will automatically recognize that the SUT shall be tested in black
box mode.

Test Case Execution

Test Execution Dialog for code, flow chart, startechart based tests

Flow chart, code, and statechart test cases are merely code based test cases, because
TestConductor uses the code generation capabilities of Rhapsody’s code generator. The
execution dialog enables you to activate the actual test execution and displays the test
results.

If you have modified your SUT or your test context, you must rebuild the code of the test
context before you start actual test execution.

Execute any test case by using the context menu entry Execute TestCase. The
TestConductor execution dialog will open, and the test case execution will be started.

81

Test Execution Dialog

TestConductor displays the assertions defined in a code, flow chart, or statechart test case
at run-time of the test case. During test execution new assertions are listed as soon as they
are reached and checked by TestConductor. Each line in the dialog displays information

about one particular assertion including the final results, as shown in the following figure.

Alxl
DROE: N -
MNarne Status File/Tteration Line/Progress

- ¥, tc_code © PasSED
£ check_1.1 @ PASSED TCon_CashRegister.cop 129
£ check_1.2 @ PASSED TCon_CashReqgister.cpp 132

After the test case execution has been terminated you can analyze the results of executed
assertions.

Test Information

TestConductor displays information to analyze the test results. The information columns
are as follows:

* Name—Displays the name of the assertion checked by TestConductor during test
execution.

* File/Iteration—Shows information about the source file name in which the
TestConductor assertion is specified. If a SD test case is executed, it shows the
iteration number of the SDInstance.

* Line/Progress—Shows information about the code line within the file in which the
assertion is specified. If a SD test case is executed, it shows the progress of the SD
instance.

* Result—Shows the result of the assertion. The possible values are PASSED and
FAILED.

Controlling test case execution

The test case execution dialog provides several functions that can be used to control the
test case execution. The functions are available by pressing one of the icons in the top
right corner of the execution dialog.

Test Execution Dialog for sequence diagram based tests

The execution dialog enables you to activate the actual test execution and displays the test
results. You can use test results in order to generate sequence diagrams for further
regression testing or in order to prepare documentation.

If you have modified your SUT or your test context, you must rebuild the code of the test
context before you start test execution.

82

Context menu entry Execute TestCase of a selected test case opens the execution dialog.
For a sequence diagram that is exclusively referenced by only one test case, the execution
dialog can alternatively be opened using the context menu entry Execute TestCase of
TestScenario of the selected sequence diagram. After selecting Execute TestCase, the
execution dialog opens and the test case execution starts.

= =
DROE - N -1
MNarne Status File/lteration | Line/Progress
- "} tc_sequence_diagram EXECUTIMG
By sD_tc_0 ACTIVE 1 0% (0/4)

Test Execution Dialog

During test case execution, the test execution information is displayed in the test execution
dialog.

TestConductor displays the first iterations of sequence diagram instances without specified
ordered predecessors as the initial run-time instances in the execution dialog. During test
execution new run-time instances are listed as soon as their ordered predecessors or
previous iterations have been fully traversed. Each line in the dialog displays information
about one sequence diagram run-time instance, including intermediate and final results, as
shown in the following figure.

2l =l
DRORE - b
MNarme Status File/Tteration | Line/Progress
- ¥, tr_sequence_diagram E3 FAILED
By sD_tc_0 & FaILED 1 75% (3/M4)

Since the test is still running you cannot modify it. However, you can verify the test
configuration, the activation conditions of the sequence diagram instances, and so on.

Test Information

TestConductor displays information to analyze the test results. The information columns
are as follows:

* Name—Shows the list of all run-time instances in the order of their appearance in
the test. You can activate sequence diagram instances sequentially (one after
another) or in parallel (independently).

* Status—Shows the current states of run-time instances during test execution. The
possible values are “NOT ACTIVE”, “ACTIVE”, “PASSED”, and “FAILED”. In the
example, the entire test executes automatically, until it eventually shows the final
result “(Status - FAILED)”, because TestConductor found an error.

&3

* File/Iteration—Shows the absolute number of the currently executed run-time
instance of the sequence diagram instance under consideration. At each point in
time, you can have at most one active run-time instance of an sequence diagram
instance. However, over time you can have infinitely many invocations. In the
example of the “tc_SimpleStart” test, only one run-time instance appears in this
field, because you selected single iteration mode. An arbitrary number of run-time
instances can be created during model execution if the execution mode of a
sequence diagram instance is set to multiple iteration with a concrete number.

* Line/Progress—Shows the percentage of message actions that passed successfully
through the tested sequence diagram instance during test execution. A message
action is one of the following:

= Event sending
= Internal event consumption
= Operation call

= Condition mark validation

For example, every event arrow in a sequence diagram specifies two ordered message
actions. TestConductor displays the progress as “percentage X/Y”. The X stands for the
number of actions that passed; Y stands for all the actions specified in the sequence
diagram. For example, this test failed at 75%, and 3 out of 4 actions passed.

Displaying Test Results by withess scenarios

You can display the test results graphically in order to analyze the states of a run-time
instance at different points in time.

For example, to display a failure in the “tc_SimpleStart”, do the following: To see the
graphical representation of the results, select a run-time instance in the list and select
Show as SD from the context menu. A recorded sequence diagram is displayed, showing
the actual order of the messages passed through the model simulation.

«SUT»
TCon_CashRegiste TCon_CashReqgiste
ritsCashRegister:C ritsTC_at_hw_of_
ashRegister CashRegister TC_a
t_hw_of_CashRegi

| eystart
|

| show (aMsg = OK): Check of in value of argument aMsg faled

The resulting sequence diagram can be used for failure analysis or can be saved for further
documentation.

84

In the sequence diagram created for a run-time instance, the following messages are
displayed:

* Messages that have already occurred in the executed application. Observed
messages are shown in green.
* Messages that are missed. Expected but not seen messages are shown in blue.

* A message that has wrongly arrived or parameter values that do not match.
Messages that are observed in not expected order (failure) are shown in red.
If a parameter or return value of the message is wrong, per default the observed
value is shown in the witness scenario (assertion based testing mode with option
rtc_assert _handling set to by _string).

A red message indicates a failure. In the resulting exported sequence diagram, a red
message is annotated with a short explanation of the failure, which can be one of the
following:

* Sending out of order

* Event Sending - Parameter values do not match

* Event Sending - Parameter values not in range

* Consumption out of order

* Event Consumption - Parameter values do not match

* Event Consumption - Parameter values not in range

* Operation Call out of order

* Operation Call - In Parameter values do not match

* Operation Call - In Parameter values not in range

* Operation Call returned - Return value does not match

* Operation Call returned - Out Parameter values do not match
* Operation Call returned - Out Parameter values not in range
* DataFlow Message - Value does not match

* DataFlow Message - Value not in range

* DataFlow Message out of order

See page 224 for more information about failure analysis.

Note: When doing Show as SD in animation based testing mode, the color coded scenario
is not permanently added to the model. It is intended for analyzing the current test
execution, not for documentation. After closing the diagram or the model the scenario will
be lost.

To permanently add a witness scenario to the model in animation based testing mode,
select Add to model instead of Show as SD in the context menu.

In assertion based testing mode, each time you do a “Show as SD”, TestConductor
automatically adds a color coded scenario to the model. The color coded scenario is added
to the model to the same owner as the original specification scenario. By default, the test
case operation is the owner of the specification scenario.

85

Automatically adding witness scenarios to the model for failed SDInstances

Sometimes it is useful that SDs showing failed SDInstances are added automatically to the
model after test case execution, e.g. for documentation purposes or if test cases are
executed in batch mode and failed test cases are analyzed later. In order to do this in
animation based testing mode, switch on the property

“TestConductor. TestCase.CreateSDForFailedSDInstance™:

% SD_tc 00 : ; o : :

+| E"ﬁ ShInstances wwﬂﬂ
H-® S0 to 1)

‘ TestComponentInst
%y TestConfigurations | iew all =
¢ TestResults
stScenarios ;
SDTestScenario_D |=| TestCase
COTosdmsnceris 1 - AnimatedsUT

ATGTestCasze [
CalloperationsOnlywhenCallstackEmpty |
ComputeCoverage

General] Descriptiun] Implementatinn] Argumentz | Relations | Tags

-/ TestConductor

-
Py
g
=
i}
=

[cla]a]s]

Now, after executing a test case that has switched on this property, TestConductor
automatically adds a scenario to the model showing the reason of the test case failure.
Additionally, a dependency is added to the TestResult of the executed test case linking the
TestResult to the added SD. This dependency can be used to navigate directly from the
TestResult to the SDs that have been added for the failed SDInstances.

i ?fq;:;esglag 0, Instarce 8Dt teration 1 J Si=eguence DR am e
1 Qmponents - -+ | T.:CashRegiste] TC_at_hw_o.|
= 59 TestContexts al
=9 TCon_CashRegister i TEST S0 _tc_O, Instance SO _tc_0O, lteratior
- CoverageResuits *
4§ TCon_CashRegister_TgstContextCoverage || Jo TCon_CashR | [TCon_CashR
5 Links 5 egister.itsCas | | egister.itsTC_
* @ SUTs hRegister.Ca at_hw of Cas
+ &4 Test Context Diagrams L 3
=%, TestCases 2 ! AT
%, AD_tr_0() < : |
+ B Code_tc_00) n show(aMsg:Hglaﬂy]. Dperation Cs
. : FC_tc_00 show(aMsg=S5tog)
=% SD_tc_00 el ’
= B} SDinstances & | |
By so o
- of TestResults & | |
= W T 0 0.h
="y Dependencies i")' | |
=y TEST SD_tc_0_ Ins_ti'lfj-l)/} | | |

In assertion based testing mode, switch on the tag
“CreateWitnessScenarioForFailedSDTestCase” on the code generation configuration used
for test execution. If this tag is enabled, TestConductor will automatically create a witness

86

scenario for each executed sequence diagram test case which did not pass and add it to the
model.

Abort Test Execution

In order to abort a running test either click the stop icon in the Rhapsody tool bar or click
the abort icon in the test execution window.

Execution Timeout

Execution timeout for animation based testing

The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value is 600 seconds.

You may define a timeout for every test case separately via the property

TestConductor: :TestCase: :ExecutionIdleTimeout

In case a timeout is defined and the application does not show any activity for <value of
timeout> seconds the execution of this test case is interrupted. In this case, this test case
will be marked as “timeout” in the result report.

Test Execution Report

After the execution of a test case has finished and the execution dialog has closed, an
execution report is written into a HTML file. This file is added to the test case as a
controlled file.* If a report file already exists it is overwritten, only the report of the last
execution is stored in the model. If a test case is executed for multiple code generation
configurations, for each configuration a separate test execution report is stored in the
model. This way the test results with different settings (debug, release) or from different
execution environments (host, target) can be compared.

El---"’.'_; kc_Simplestark()

EH; aDInskances

HJ.II S0t 0

EIEf TestResults
= *_c::f _T“I;_Zn:nru_lZ-En::I'uF!.En;li::tEr'_tn:_SiranE'E-tart_III.htrnl

TestConductor also stores a tag Verdict below the linked report file, which stores the result
of the test case execution.

*Note that with the property TestConductor.Settings.ReportLocation (see page 134) a user can specify a
dedicated report location)

87

Tag : Yerdict in TCon_CashRegister_tc_SimpleStart 0.heml T |

General | Description I

Mame: I"Jeru:liu:t LI
Applicable to: j

Type: Sting j EI
Y alue: IPESSEd _I

Lucatt:l Ok | Apply ||

Possible values are: "Passed", "Failed", "Aborted", "Timeout" and "Undefined" and
“Error”.

A double click on the test result “TCon_CashRegister tc SimpleStart 0.html”
opens the linked HTML test report.

88

Test Case Result

Test Case: tc_SimpleStart

16:25:24, Tuesday, March 06, 2007

Environment Info

Test executed on machine: MNBOSC3E

Test executed by user: rsanders

Windows 2000 / Windows XP
Aries, build 805506

2.0, build 532

Tested Project

Used OF version:
Used Rhapsody version:

Uged TestConductor version:

Project: CashRegister
Active Component: TCon_CashReqgister_0
Active Configuration: DefaultConfig

SDs used in test
TPkg_CashRegister_0::SimpleStart

Summary Info

Total number of S0s used: 1

Total nurber of 50 instances in test: 1

Tatal number of executed SD instances: 1

Total number of PASSED SD instances: 0 0%)
Total nurber of FAILED SD instances: 1 (100%:)
Total nurber of ACTIVE SO instances: 0 0%)
Total nurber of MOT ACTIVE SD instances: 0{0%)

Detailed Results

SD instance "SD_tc_0'

Iterations: SO_tc_O
Status: failed
Progress: 75% (3/4)

Debugging test cases

When a test case fails one can use TestConductor’s debugging capabilities in order to find
out the reason for the fail. In order to turn on test case debugging, one has to turn on
“Debugging mode” in the test case execution window:

89

MNarne Status File/lter... | Ling/Prog
-¥, sD_tr_1 €D FAILED
By sD_tc_1) FAILED 1 60% (3715

After turning on debugging mode, one can restart the test case, e.g. by pressing the “Start”
icon in the execution window. In contrast to normal test execution mode, in debugging
mode the test execution does not progress automatically but can be controlled by using
Rhapsody’s animation toolbar. For instance, one can step through the test case by using
multiple “Go Step” commands in the animation toolbar. In the execution window, one can
see the current progress of the test case, and in parallel one can use Rhapsody’s animation
features (e.g. animated sequence diagrams or animated statecharts) to inspect the model
during debugging of the test case. Besides “Go Step”, also all other animation commands
like “Go Idle” etc. are available, e.g. one can add tracer commands etc.

This interactive, step-by-step execution of test case is available both for animation based
and assertion based testing mode. But is is available only when testing applications with
animation instrumentation.

Debugging a test case is possible only when executing a single test case. When executing
a test context or test package the Debug button is disabled (and switched off).

=lx| " [|animated Animated ... x
vl | TCon_C..CashRegister TCon_.:ProductDatabase| ..TC at_hw 0.,
Mame Status F | Line/fProgress Bk
-1¥ SD_tc_1 EXECUTING » Animated Animated Scenario selacting pre‘ﬂﬂﬁ@enamﬂ
By sD_tr_1 ACTIVE 1 20% (3/15) | 2 i —
TiCon_CashRegi TCon_CashRegister.i TiCon_CashR
ster.itsCashRegi tsCashRengister.itsPr egister.itsTC_
! ster:CashRegist oductDatabase:Prod at_tw_of Cas
- [[evStan()

startSessioni)

I B NN

Using breaks and tracer commands during debugging

In debugging mode, in addition to stepping through the test case execution using
Rhapsody’s animation toolbar, one can also define breaks and tracer commands in the test
cases. When a break command is reached, the test case execution is breaked at this
location. When a tracer command is reached, it is simply executed. Both breaks and tracer
commands can be used in all kinds of test cases.

1. Defining breaks and tracer commands in code/flowchart/statechart test cases:

To define a break in a code, flowchart or statechart test case, one has to write the
macro “RTC_BREAK” (C/C++) resp. “TestConductor. BREAK()”. When the test
case execution reaches the break, it is executed and the test case execution is
stopped. One can proceed the test case execution by using Rhapsody’s animation
toolbar (e.g. by pressing “Go Step” or “Go Idle” etc.). To execute a specific tracer
command during test case execution, one has to use the macro

90

“RTC_TRACER_COMMAND(cmd)” (C/C++) resp. the function
“TestConductor. TRACER _ COMMAND(cmd)”. For details about the supported
syntax of the “cmd” argument please look into Rhapsody’s User Guide. When the
test case execution reaches the specified tracer command, it is simply executed as
any other tracer command that was entered directly in Rhapsody’s animation
toolbar.

2. Defining breaks and tracer commands in sequence diagram test cases:

To define a break in a sequence diagram test case, one has to add a condition on
one of the life lines in the sequence diagram. In the condition, one has to write
“RTC_BREAK”. When executing the test case in debugging mode, the test case
execution stops when the break is reached. In Rhapsody’s animation output tab the
information “Reached TestCase breakpoint” is printed.

Animated Scenario selecting products “)msce"a"“

TCaon_CashReqi TCon_CashRegister.i TCon_CashR
ster.itsCashReqi tsCashRegister.itsPr eqister. tsTC
ster.CashRegist oductDatabase:Prod at_hw_of_Cas

|
| |
stanSession |

|
showlahsg = Ready) |
|
|

.
-

< RTC_BREAK >

evBFrcode(aCnde = 12345)
.I.._LI_H_.I__-{L"\.(J-\ |

To define tracer commands in a sequence diagram test case, one has to add a
condition on one of the life lines in the sequence diagram. In the condition, one
has to write “RTC_TRACER COMMAND”. When executing the test case in
debugging mode, the test case execution executes the specified tracer command
when the execution reaches the position of the tracer command.

ot PR o

Animated Scenario selecting products #restSeenaries

TCaon_CashReqi TCon_CashRegister. TCon_CashR

steritsCashRey itsCashRegister.itsP egister.itsTC_

ister: CashRegis roductDatabase:Pro at_hw of Ca
evStart_O_i

%nSessinnO

show(ahlsg = Ready)

...l
L
1

RTC_TRACER_CMDitrace #all all

evBarcode(aCode = 12343)
| |

91

Test Context Execution

Starting Test Execution

One kind of batch execution is the execution of a complete test context. It will then
execute all test cases belonging to a test context.

* Right-click on the test context TCon CashRegister and select Update
TestContext. This updates all necessary driver and stub operations derived from
the defined sequence diagram test cases within the test context.

* Right-click on the test context TCon CashRegister and select Build
TestContext. This re-generates the necessary code for all elements of the test
architecture and starts the compile and link process for the test architecture.

* Right-click on the test context TCon CashRegister and select Execute
TestContext. This starts the batch execution for all defined test cases within the

test context.

=-C§ TestPackages
SRR TPko_CashRegiste
#1-_] Components
H _;; Test_omponen
= 83 TestContexts
=9 TCon_Cast
= Attribu
L4 Links
b SUTs
Ry Test G
B TestCa

‘ TestCa
%y TestCo

4 Sf TestRe
* E—'l' TestScenarios

(] (- [[[

Cut
Copy

Delete from Model

Create 5D TestCase
Create Flowchart TestiCase
Create Code TestCase
Updakte TestContext

Euild TestContext

Execute TestConkext

Create TestContext
Update Test&rchitecture
Apply ATG...

If the user selects a test context and invokes its execution, all test cases of this test context
are executed in a sequence. To terminate the execution of a test context or a test package,
press the abort icon in the test execution window.

92

Mame Status
- @ TCon_CashReqister & FalLED
-¥, FC_tc_D ©) PASSED
) check_2.2, Pro.. @ PASSED
-¥, tr_code) PASSED
) check_1.1 © PASSED
{2 check_1.2 © PASSED
-¥, t_sequence_diagram &3 FAILED
By sD_tc_o @ FAILED

Stopping Test Execution

File/Tteration

TCon_CashRegister.cpp

TCon_CashRegister.cpp
TCon_CashRegister.cpp

1

¥

=
O
Line/Progres:

76

93
06

75% (3/4)

To terminate the execution of a test context or a test package, press the abort icon in the

test execution window.

Execution Timeout

The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value is 600 seconds.

You may define a timeout for this batch mode execution of test cases individually per test

case. This can be done via the property

TestConductor: :TestCase: :ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of
timeout> seconds the execution of this test case is interrupted and the next test case is
started. In this case, this test case will be marked as “timeout” in the result report.

Ordering of Test Cases

The order of the test cases inside the test context (similar to the “Edit Operations Order”
in the Rhapsody browser) can be changed. In this way you can influence the execution

order of the test cases.

93

Edit Operations Declaration Order

¥ Use Default Order

Cancel |

Sighature | Return Type | “Wigibilty | Scope | i I
b_activity_diagram(] wiid public inztance
be_code(] wiid public inztance T I
te_flowve_chart(] woid public inztance
thc_zequence_diagram(] wiid public inztance

Help |

Per default the test cases are sorted and executed in alphabetical order.

Test Execution Report

After execution of each test case its result HTML report is written. The file is added to the

test case as controlled file.?

After execution of all test cases an execution report of the whole test context is written
into an HTML file. The file is added to the test context as controlled file.

If a report file already exists it is overwritten, only the report of the last execution is stored
in the model. If a test case or test context is executed for multiple code generation

configurations, for each configuration a separate test execution report is stored in the

model. This way the test results with different settings (debug, release) or from different
execution environments (host, target) can be compared.

B-C TestPackages

EI.J_:I TPkg_CashReqgister_0
-4}, TestComponents
L:_Ifb TestContexts

ks

Eﬁ) TCon_CashReqister
- Attributes

(-1 Test Conkext Diagrams
E-#%, TestCases
B be_activity_diagram{)
A te_code)
bo_simplestart()
‘ TestComponentInstances
By, TestConfigurations
E:{i‘ TestResults
g | 0N _CashPegister 6. hkml

*Note that with the property TestConductor.Settings.ReportLocation (see page 134) a user can specify a

dedicated report location)

94

A double-click on the test result “TCon_CashRegister 6.html” opens the
linked test report.

Test Context Result

Test Context: TCon_CashRegister

Thu Mar 08 11:24:47 2007

Environment Info

Test executed on machine: MNBOSC3E

reanders

Windows 2000 / Windows XP
Aries, build 205506

Test executed by user:
Lsed OF version:

Used Rhapsody version:

Used TestConductor version: 2.0, build 543
Tested Project
Project: CashRegister

Active Compaonent: TiCon_CashRegister_0

Artive Configuration: DefaultConfig

Summary: FAILED

Test Context: TCon_CashRegister

to_activity_diagram PASSED
fC_code PASSED
tc_SimpleStart FAILED

Test Package Execution

Starting Test Execution

One kind of batch execution is the execution of a complete test package. It will then
execute all test cases underneath all test contexts belonging to a test package.

Right-click on the test package TPkg CashRegister and select Update
TestPackage. This updates all necessary driver and stub operations derived from
the defined sequence diagram test cases within the test package.

Right-click on the test package TPkg CashRegister and select Build
TestPackage. This re-generates the necessary code for all elements of the test
architectures and starts the compile and link process of all test architectures.
Right-click on the test package TPkg CashRegister and select Execute

TestPackage. This starts the batch execution of all defined test cases within the test
package.

95

= Cf TestPackages
SRR TPko_CashReqiste
+1-{_] Components Configuration Managerment >
o _j TestComponen Format..,
= _f}i TestContexks Associate Image

S| 3’ TiCon_Cast :
B E Aktribu Mavigate to DOORS
o %. Links cut
o j‘ SUTs Copy
g Test G
j+' " TestCa Delete From Model
2] ‘ TestCa

+

B “3 TestCo Updake TestContext
#-9f TestRe Clean TestPackage
=By Testscenarios yid TestPackage

Execute TestPackage
Create TestPackage

If you select a test package and invoke its execution, each defined test context of this test
package is executed one after the other. The procedure is almost like the execution of a
test context, except the following differences:

» If one test context cannot be executed, this test context is skipped, the reason for
the problem is written to the result report, and the next test context is executed.

Stopping Execution

To terminate the execution of a test context or a test package, press the abort icon in the
test execution window.

Execution Timeout

The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value is 600 seconds.

You may define a timeout for this batch mode execution of test cases individually per test
case. This can be done via the property

TestConductor: :TestCase: :ExecutionIdleTimeout

If a timeout is defined and the application doesn't show any activity for <value of
timeout> seconds the execution of this test case is interrupted and the next test case is
started. In this case, this test case will be marked as “inconclusive” in the result report.

96

Test Execution Report

After the execution of all test cases, the execution report is written into an HTML file.
This file is added to the test package as a controlled file.® A report for each test context and
test case that has been executed was also created during execution.

If a report file already exists it is overwritten, only the report of the last execution is stored
in the model. If a test case or test context or test package is executed for multiple code
generation configurations, for each configuration a separate test execution report is stored
in the model. This way the test results with different settings (debug, release) or from
different execution environments (host, target) can be compared.

E1-CF TestPackages
EIEJ;, TPlkg_CashRegister 0
3 TestComponents
EI#J TestCantexts
Eﬁ) TCon_CashRegister
- Attributes
&Ly Links
[l SUTs
{:l Test Conkext Diagrams
E|---*.'_.- TestCases
---"._- ke_activity _diagram)
E-# be_code()
B-# te_SimplesStart()
‘ TestComponentInstances
g TestConfigurations
i’i’ TestResults
E‘f—.f.r TestResuIts
ﬂ Result_0,html
E‘i'D TestScenarios

e Adouble click on the test result “Result 0.html” opens the linked test report

Note that with the property TestConductor.Settings.ReportLocation (see page 134) a user can specify a
dedicated report location)

97

Test Package Result

Test Package: TPkg_CashRegister_0
Thu Mar 08 11:31:07 2007

Environment Info

Test executed on machine: MBOSC3E

Test executed by user: reanders

IUsed OS yersion: Windows 2000 / Windows XP

Used Rhapsody version: Aries, build 805506

Used TestConductor version: 2.0, build 548
st |

Project: CashRegister

Active Component: TCon_CashRegister_0

Artive Configuration: DefaultZonfig

Test Package: TPkg_CashRegister_0

Containing Packages:

Containing Test Contexts:

TCon_CashReqgister FAILED

98

Assertion based testing mode

Before Rhapsody 7.6, TestConductor only supports so-called animation based testing
mode. In animation based testing mode, the scheduling and arbitration, i.e., the way
TestConductor decides whether a test case is passed or failed, is based on animation
messages coming from Rhapsody’s animation feature. Starting from Rhapsody 7.6,
TestConductor also supports so-called assertion based testing mode. In contrast to
animation based testing mode, in assertion based testing mode both scheduling and
arbitration of test cases is directly controlled by assertions that are compiled into the test
executable, i.e., scheduling and arbitration of test cases is independent from Rhapsody’s
animation feature. Since in assertion based testing mode the test cases are part of the
application itself, observation of messages or behavior in the initialization of the
application is limited. The test case arbitration and scheduling is not initialized before
other parts of the application. Hence, for testing system setup using the assertion based
testing mode, it is recommended to provide the model with an initial trigger for starting
system setup.

In general, both animation based testing and assertion based testing mode provide the
same set of features, however, there are still some differences because of the underlying
testing approach. In this section, we highlight the characteristics of assertion based testing.

Choosing between testing modes

By default new test architectures created with Rhapsody 7.6 or higher are created with
testing mode set to assertion based testing, i.e., the property

“TestConductor.Settings. TestingMode” is set to “AssertionBased” on the top level test
package and the architecture is created accordingly. For existing test packages that have
been created with a Rhapsody version older than 7.6 this property is set to
“AnimationBased”, i.e. for such test architectures the animation based testing mode is
applied and the tests are executed the same way as before, based on Rhapsody animation
messages.

The mode for newly created test architectures can be defined in the TestConductor main
dialog. Open the TestConductor main dialog by choosing “TestConductor” from the tools
menu. In the upcoming dialog, select the testing mode you want TestConductor to apply
on newly created test architectures.

This setting does not affect the mode of any existing test architecture in the model.
TestConductor supports using animation and assertion based test architectures in the same
model but it is not supported to mix these modes in one test architecture. Because of the
different structure of the test architectures for each mode, it is not supported to switch an
existing test architecture to a different mode by setting the TestingMode property on the
test package. For some kinds of animation based test architectures, TestConductor
supports an automatic migration of the test architecture to assertion based testing mode.
See “Migrating animation based test architecture to assertion based test architecture” on
page 100.

99

Rhapsody TestConductor n

Help

[Global Settingz

CreateT estbrchitecturetode Standard W
CreateT estbrchitecture Transparency BlackBox W
Architecture ugsing global objects Falze W
tapS0ToT estérchitecturebd ode Strict W
OwenanteT estContextDiagram Mewer W
R eplacementCreationkd ode W rapper W
TestCazeE vecutionOrder BrowserOrder W

Testingtdode Azzertionk ased

Puart rumber for coverage reparts &0001

Cancel

Migrating animation based test architecture to assertion based test
architecture

There are several differences between an assertion based and an animation based test
architecture, so an animation based test architecture cannot be converted into an
animation based test architecture just by changing the property
“TestConductor.Settings. TestingMode”. Instead, it is recommended to create a new test
architecture and to create new test cases based on the original ones.

To manually migrate an animation based into an assertion based test architecture, the
following approach should be applied:

* Make sure the project property “TestConductor.Settings. TestingMode” is set to
“AssertionBased” (see section “Choosing between testing modes” on page 99).

* Create a new test architecture for the class, file or object which was tested by the
animation based test architecture.

* Migrate the test cases of the original test architecture one after another. For the
different kinds of test cases, the following migration steps should be applied:

© Code based test cases
A code based test case can be copied to the new assertion based test
architecture. It is recommended to inspect the code of the test case and check
for references of test components which might have a different name.

100

Flowchart based test cases

A flowchart based test case can be copied to the new assertion based test
architecture. It is recommended to inspect the code of the test case and check
for references of test components which might have a different name.

Statechart based test case
A statechart based test case should be migrated this way:

Create a new test case by applying the helper “Create Statechart
TestCase” on the new test context.

Select all elements in the new statechart and delete them
Open the statechart of the original test case

Select all elements in the old statechart and copy them into the new
statechart

Adjust the first transition in the statechart (from state “Initial” to state
“state 17):

For language C++: Select “evTCStart” from the new test package as the
trigger of the transition and remove the line “itsTCon->rtc_init()” from
the Action of the transition.

For language C: Select “evTCStart” from the new test package as the
trigger of the transition and remove the line

“TCon_<name> rtc_init(me->itsTCon)” from the Action of the transition.

Adjust the last transition in the statechart (from state “final” to the
termination state):

For language C++: In the Action of the transition, change line
“itsTCon->rtc_exit()” to “itsTCon->finishTestCase()”.

For language C: In the Action of the transition, change line
“TCon_<name> rtc_exit(me->itsTCon)” to
“Tcon_<name>_finishTestCase(me->itsTCon)”.

Sequence diagram based test case
A sequence diagram based test case should be migrated this way:

If the old and the new test architecture have similar test components, the
test case wizard can be used to create a new test cased based on the test
scenario of the old test case. To do this, right click the original test
scenario and select “Create TestCase...”. In the dialog, the destination test
context can be selected: If the new test context of the assertion based test
architecture is listed, select the new test context and confirm the creation
of a new test case by clicking the Ok button. The wizard will create a new
test case in the animation based test architecture, based on the original test
scenario.

If the wizard cannot match the test component instances of the animation
based test architectures with the test component instances of the assertion
based test architecture, the sequence diagram based test cases need to be
migrated manually. To do so, create a new new test case by applying the
helper “Create SD TestCase” on the new test context. Then add the
messages of the original test scenario one after another.

101

Automatical Migration of animation based TestArchitectures to
assertion based Testing mode

When updating a TestContect of an animation based TestArchitecture, TestConductor
checks for applicability of automatical migration to assertion based testing mode.
Automatical migration is applicable to animation based TestArchitecture whose SUT is
only connected to TestComponents via ports or whose SUT only has instantiated
associations to interfaces.

If the TestArchitecture fulfills these applicability criteria, automatical migration is offered
to the user in a dialog. If the user confirms the attempt of migration, a new
TestArchitecture is created from a copy of the animation based architecture. A report of
the migration steps — including warnings and potential problems — is issued on the console
and stored additionally in a comment below the newly created TestContext. After
application of migration or if the user doesn't confirm the attempt to migration, property
TestConductor. TestContext.MigrateToAssertionBasedMode (with value 'False', unchecked
boolean property) is added to the TestContext of the animation based old
TestArchitecture. Automatical migration isn't offered to the user for this TestContext again
unless property TestConductor. TestContext.MigrateToAssertionBasedMode is checked,
i.e.set to "True'.

In particular SD TestCases may be affected by several limitations of the assertion based
TestingMode:

* assertion based execution only supports linearly ordered SDInstances.

* assertion based execution only supports 'driving and monitoring' SDInstances.
* assertion based execution only supports SDTestCases with single SDInstances.
* multiple iteration of SDInstances isn't supported in assertion based execution.
» ordered predecessors aren't supported by assertion based execution.

Potential problems are reported on the console and these migration messages are also
recorded in a comment that is stored below the TestContext in the new TestArchitecture
obtained by automatical migration.Note, that most TestConductor. TestCase properties
aren't regarded in assertion based execution.

Differences between animation and assertion based testing mode

The table below is listing the main differences between the two testing modes.

Animation based testing mode Assertion based testing mode
Not certified. Certified for IEC 61508 and derived standards.
No validation suite available. TestConductor validation suite for on site

qualification available.

Based on Rhapsody animation feature: The test | No animation instrumentation needed.
architecture needs to be instrumented with
animation instrumentation.

Allows white box testing if the SUT is Black box testing (optional grey box testing using
instrumented with animation instrumentation. special TestArchitecture).

102

Animation based testing mode

Assertion based testing mode

Serialization and unserialization functions needed
to validate and inject message arguments.

Serialization or unserialization functions not
needed.

Supports computation of model coverage if the
SUT is instrumented with animation
instrumentation.

Supports computation of model coverage if the
SUT is instrumented with animation
Instrumentation.

No computation of code coverage (only with third
party tools).

Supports computation of code coverage.

Test scheduler and arbiter are in TestConductor
tool.

Test scheduler and arbiter are part of the tested
application.

SD based TestCases can have multiple
SDInstances.

SD based TestCases can have only one
SDInstance.

No support of SD operators in SD based
TestCases.

Support of SD operators in SD based TestCases
(not all).

Available for C++, C, Java, Ada.

Available for C++, C.

Computing Model Coverage during Test Execution

When executing TestCases, i.¢., either individual TestCases, a TestContext or a
TestPackage, TestConductor provides the possibility to compute which model parts of the
SUT are executed during the execution of the TestCases. This information is provided by
an HTML report that is created and added to the model after the execution of the test
cases. The report contains information about accumulated coverage of states, transitions,
events and operations (except constructors and destructors) of all SUT classes used in the

TestArchitecture.

Computing Model Coverage for single Test Cases

For animation based testing (TestConductor.Settings. TestingMode == AnimationBased), to
compute the model coverage of single test cases, switch on the property
“TestConductor. TestCase.ComputeCoverage”:

103

£-EF TestPackages

|§|---|J;'j TPhg_CashRegister
D Comiponsnts
i-i TestComponents

I+l

[=-£59 TestContexts
-4 TCon_CashRegist

[y Links
;{‘, SUTs

[+ g Test Context
E-% TestCases
‘ TestCompons
\1:' TestConfigur:

- [Ely TestScenanios

Test Case : SD_tc_0 in TCon_CashRegister

General I Description I Implementation I ﬂrgm’nmtsl Relation

View Al -

=g

[=]| TestConductor

[l TestCase
AnimatedSUT Aurtomatic
ATGTestCase H

telCows

¥ g e
L

CoverageKind

CallperationsOnhyWhenCallstack Empty

CreateSDForFailed SDInstanoe

Alternatively, computation of model coverage can be enabled also for animation based
testing mode by switching on tag “ComputeModelCoverage” on the code generation
configuration used for testing.

Now, each time you execute the test case, in addition to the test case execution report,
TestConductor creates a model coverage report and adds it to the model’. If a test case is
executed for multiple code generation configurations, for each configuration a separate
model coverage report is stored in the model.

"Note that with the property TestConductor.Settings.ReportLocation (see page 134) a user can specify a

dedicated report location)

104

TestPackage: TPkg_CashRegister
TestConteidt: TCon_CashRegistar
TestCase: S0 _tc O

Detailed Coverage Summary of CashRegister (6/25)

Operations

clentifyProduct
addProduct
startSassion
erdSession
generateTcket

= & CoverageResults
TCon_CashRegister SD to

Statechart: StatechartDfCashRegister
ROOT. idle State

C ROOT . active State
Transition
Transition
Transibon
Trarsiton
Transition |
Transition
Transition
Transition

£ @ - W W @ D

Transition

Coverage Items

Model elements which are subject to the coverage are the operations, event receptions and
elements in behavior specifications (statecharts or activities) of the classes for which
coverage is measured (for the selection of classes for the coverage measurement see
section 'Choosing the Coverage Kind for Model Coverage'). If an operation is specified by
a behavior diagram?®, this behavior is considered as well. Of a behavior all vertexes and
transitions contained in the behavior are considered. If a coverage item is marked as
'covered' this means that the corresponding code generated for the model element has been
traversed during the execution of the test, e.g. an operation has been called or a state in a
statechart has been reached’. The coverage information is from the model view, there is no
information about how much of the user code has been traversed, but only that the model
element was used. For a code view with detailed information about the coverage of the
generated and the user code you need to use code coverage.

8For operations only token oriented activities are allowed.

°For some statechart and activity elements which are directly dependent of other elements Rhapsody does not
generate animation messages which are used by TestConductor to measure the coverage. For these elements
TestConductor applies a set of dependency rules to derive the coverage.

105

Limitations:
* Overridden operations can not be distinguished
* Overloaded operations can not be distinguished
* Model elements for which animation is switched off appear as 'not covered' even
if they were used in the test execution.

Coverage Measurement

TestConductor uses the Rhapsody animation to determine the coverage of model
elements, therefore usage of model coverage requires the 'Instrumentation Mode' of the
configuration set to 'Animation'. With this setting the Rhapsody code generation
instruments the code with additional animation code, TestConductor listens at runtime to
animation messages sent by the application and uses these messages to determine the
model coverage. There are some elements for which the Rhapsody code generation does
not generate explicit animation messages because the code is included in a block of an
element with animation message (e.g. in transition chains with junction connectors only
the first transition is annotated with animation code, the code of the other transitions is
included in the code block of the first transition). For these scenarios TestConductor
applies a set of dependency rules to derive the coverage of these elements from the
coverage of elements with animation message.

Traceability of Coverage Items

The html report contains links for the navigation from the report to the Rhapsody model:
When clicking on the link of an operation, event, state or transition, the corresponding
model element is highlighted in the Rhapsody browser.

Note: This is not supported for Internet Explorer 6, to be able to use this feature, Internet
Explorer 7 or higher is needed. Also supported browsers are Firefox 3 and higher, Opera
and Chrome. Highlighting model elements will work only if Javascript is enabled in the
browser and no popup blocker is active. For Internet Explorer 7 and up, protected mode
has to be disabled (Tools->Internet Options->Security).

To highlight the model element, a Javascript script is used which sends a command to the
running Rhapsody application using a TCP/IP port. Per default, port number 50001 is used
for this communication. If this port is not available or when running different instances of
Rhapsody on the same machine, the port number can be changed so each running instance
of Rhapsody can communicate with the individual model coverage report. To do this, open
the TestConductor main dialog by Rhapsody menu Tools->Test Conductor, and change the
“Port number for coverage reports” and click OK. After this, double click the
ModelCoverageResult in the Rhapsody model to open the report with the modified port
number. Allowed port numbers are between 1024 and 65535.

To change the port number when the report is already opened in the browser, change the
port in the TestConductor main dialog and also in the edit field in the html report to the
same number.

A different default port number can be defined using the environment variable
PORTSNOOPERPORT: Set this variable to the new default number before starting
Rhapsody.

106

Rhapsody TestConduckor x|

Help

— Global Settingz

CreateT estirchitecturetode

I Standard j
MapS0OToTestérchitecturetode I Shict j
OwenaniteT estContextDliagram I Never j
FeplacementCreationtd ode I

Wrapper j
TestCazek secutiondrder IBerserDrder j

Testingtode IﬁssertinnE azed j

Fort number for coverage reports (IEDDDE)

Cancel |

= “ File:,I',I',I'C:,I'RhapsodyTesting,l'SampIes,l'CppSamples,l'TestCunductor,l'CppModeICodeCoverage,l'CppModeICodeCoverage_rpy,l'TCon_CaIc_mcu@'t?wﬁport=SDDUS—‘N_>

:: Coverage Resulk of TestContext |

Port number to be used to connect to Rhapsody:

TestContext Coverage Result

Choosing the Coverage Kind for Model Coverage

TestConductor supports four different kinds of coverage measures, which can be chosen
using property TestConductor. TestCase.CoverageKind (if

TestConductor.Settings. TestingMode == AnimationBased) or tag “CoverageKind” of the
testing configuration (if TestConductor.Settings. TestingMode == AssertionBased)

* SUT flat (Default): Only coverage of the toplevel class of the SUT is measured,
i.e. states, transitions, and operations of parts of the SUT are not considered.
Coverage of model elements of test components is also not measured.

* SUT hierachical : Coverage of the SUT is measured in a hierarchical manner, i.e.
also states, transitions, and operations of parts of the SUT are hierarchically

107

regarded for coverage measure. Coverage of model elements of test components is
again not measured.

» TestContext flat: Coverage is measured in terms of all states, transitions, and
operations defined at the first decomposition level of the test context, i.e. all
states, transitions, and operations of the direct parts of the test context are
considered.

» TestContext hierarchical: all states, transitions, and operations in the hierarchal
structure of the test context are considered in coverage measure.

=-Ef TestPackages
EE.J:II TPk CashRegister Eenerall Desc:‘iptiunl Implementation | Arguments | Relations | Tags
D Components View & -
_i, TestComponents e
Elag ?ﬂgm [=1| TestConductor
= TCon_CashReg
___|_| i El| TestCase
{‘. SUTs AnimatedSUT Avtomatic
- Test Conte ATGTestCase O
=%, TestCases
T R, CalloperationsOntyWhenCalistackEmpty
8 rexcomsd| ||| | Compomcovaace
[y TestConfig : | SUT flat
| - . e
B o CresteSDForFailedSDinstance axh—ﬁ,
TestContext flat
BExecuteTestWithTracer | Te=tContext: hierarchical

Computing cumulative Model Coverage for TestContexts

To compute the model coverage for TestContexts, for at least one of the TestCases of the
TestContext the property “TestConductor.TestCase.ComputeCoverage” must be switched
on (if TestConductor.Settings. TestingMode == AnimationBased) or the tag
“ComputeModelCoverage” (if TestConductor.Settings. TestingMode == AssertionBased)
must be turned on. However, if the property is switched on for more than one test case of
the TestContext, TestConductor computes the cumulative coverage of all executed test
cases that have switched on this property and stores the result as a coverage report
underneath the TestContext. In order to compute the cumulative coverage of all test cases
of a TestContext this property has to be switched on for all test cases belonging to the
TestContext. A simple way to do it is to set the property directly for the TestPackage that
contains the TestContext:

108

£y TestPackages ITI| 31 LLONTSNEFS
-y s [=l| TestConductor
"{:' Ay SDInstance
\i TestCompaonents
EI& TestC ; Settings
-5 TCon_Cashl | |El| TestCase
[Ay ks AnimatedSUT Automatic
‘-;':‘ SUTs
B Test e ATGTestCase O
E...H‘:. Testlas CalloperationsCnb WhenCallstack Empty
: "x'\i-"" sb ComputeCoverage
- TestCm
: Cov Kiindl SUT flat
-y, TestCon s
#-E TestSeenarios CreateSDForFailedSDInstance D

Alternatively, computation of model coverage can be enabled also for animation based
testing mode by switching on tag “ComputeModelCoverage” on the code generation
configuration used for testing.

Now, when executing the complete TestContext, a coverage report is generated for each of
the contained test cases, and a cumulative coverage report is generated for the
TestContext. If a test context or test case is executed for multiple code generation
configurations, for each configuration a separate model coverage report is stored in the
model.

109

Detailed Coverage Summary of CashRegister (B/25)

DOperations
ot © identifyProduct
addProduct
- 3 TestContexts slar Desslon
- e TCon_CashRegister endSession
- CoverageResults generateTicket
ki L_.Dn CashReqgister_TestContext -
& 1“* STs removelastProduct
+ i) Test Context Diagrams coverad courtProducts
ol
¥ 195&35&8 EventReceptions
=B AD_tc_DO)
82| Activity Diagram Sl
=il CoverageResults evBarcade
i, a4 TCon_CashReqlster_ AD | avEnd
+ o TestResults
- I.U CDdE_‘I_DQ evRemoye
= CoverageResults evkey
-4 TCon_CashRegister__Code s
+-9f TestResults
=%, FC 1 e Statechart: StatechartOfCashRegister
- 4 CoverageResults : ROOT.idla Stata
& TCDﬂ_CaSI‘F{EgiBtEr_FC_t ROOT. active State
o8 Flowchart 0 Transition
= L; TestObjectives
+ of TestResults 2 Transition
=% SD_tr_00 f Transition
- CoverageResults 3 Trarsiton
) TCon_CashRegister__SD_1
= 3 Transition
5 Transition
7 Transition
8 Trarsition
4 Trarsition

Computing cumulative Model Coverage for TestPackages

Analogously to computing the cumulative coverage of TestContexts, TestConductor also
provides the possibility to compute the cumulative coverage of TestPackages. To compute
the model coverage for TestPackages, for at least one of the TestCases of the TestPackage
the property “TestConductor. TestCase.ComputeCoverage” must be switched on (if
TestConductor.Settings. TestingMode == AnimationBased) or the tag
“ComputeModelCoverage” (if TestConductor.Settings. TestingMode == AssertionBased)
must be turned on for the code generation configurations being used for testing. However,
if the property is switched on for more than one test case of the TestPackage,
TestConductor computes the cumulative coverage of all executed test cases that have
switched on this property and stores the result as a coverage report underneath the
TestPackage. In order to compute the cumulative coverage of all test cases of a
TestPackage this property has to be switched on for all test cases belonging to the
TestPackage. A simple way to do it is to set the property directly for the TestPackage for
which the cumulative coverage shall be computed.

Alternatively, computation of model coverage can be enabled also for animation based
testing mode by switching on tag “ComputeModelCoverage” on the code generation
configurations used for testing.

110

Computing Requirement Coverage

Computing Requirement Coverage for Test Cases and TestContexts

Beyond measuring and reporting model element coverage for executed test cases and test
contexts, TestConductor offers also the measurement of the dynamic requirement coverage
for the executed test cases and test contexts.

Precondition for measuring requirements coverage by individual test cases and test
contexts is the linkage of operations, states and transitions with requirements in the
Rhapsody model. Stereotyped dependencies targeting requirements can be added to model
elements in order to establish e.g. traceability or to express that certain model elements
contribute to establishing a particular requirement.

I:I locked
= lowering
EI [2_5 Dependencies
i by wsatisfys regl
~ «satisfy= reg2
i ey wsatisfyw reg3
I [g Incoming transitions
- (2 Outgoing transitions
=2-= stop
EI [2_5 Dependencies

ey wtraces regd
l [g Incoming transiticns
- (= Outgoing transitions
-] top

EEI--{“E? Events

-5 PredefinedTypes (REF)
EEI---EI PredefinedTypesCpp (REF)
El- EI Reqs

=- [B Requirements

..... EH FEII|4
-5 Stereotypes

Note: For the animation based testing mode the stereotype
<<AnimationBasedTestingConfiguration>> must be set on the code generation
configuration in order to have an access to the tags and properties necessary to enable and
customize computation of requirement coverage.

Requirement coverage measurement is enabled by setting both tags
“ComputeModelCoverage” and “ComputeRequirementCoverage” on the code generation
configuration.

The figure above shows <<statisfy>> dependencies from state lowering to requirements
reql, req2, and req3 and <<trace>> dependencies from state stop to requirement req3.

111

TestConductor optionally regards such dependencies in order to calculate requirement
coverage based upon model coverage information. The user can define the stereotypes to
be considered in requirement coverage calculation using property
ModelBasedTesting.Settings.StereotypesForDependenciesTo
Requirements of the code generation configuration. Consideration of multiple
stereotypes can be achieved by listing the stereotypes in a comma separated list. Per
default, stereotypes trace and satisfy are regarded.

TestConductor provides also two properties for the user in order to configure the
requirement coverage scope for TestConductor. So the user can specify the packages (and
their sub-packages), whose requirements shall be regarded at the requirement coverage
calculation within the property 'ModelBasedTesting.Settings.Requirement
CoverageRequirementsScope' of the code generation configuration. The setting of
multiple packages (and their sub-packages) can be archived via a comma separated list of
the fully qualified package paths, e.g. "RequirementsAnalysisPkg: :Requi
rementsPkg: :SecSysReqgs, TestPkg: :RequirementsPkg: :SecSysTestR
egs". The second property 'ModelBasedTesting.Settings.Requirement
CoverageRegardedTags' of the same code generation configuration, specifies via a
"requirement tag with name and value" those requirements within the pre-selected
packages, who shall be considered at the requirements coverage calculation. Again the
setting of multiple "requirement tags with name and value" can be archived via a comma
separated list, e.g. "RequirementType=functional, RequirementType=
additional".

TestConductor provides additionally two properties for the user in order to configure the
model elements scope for the TestConductor requirement coverage calculation. So the user
can specify the packages (and their sub-packages), the classes (blocks) or actors, whose
model elements shall be regarded at the requirement coverage calculation within the
property 'ModelBasedTesting.Settings.RequirementCoverageModel
ElementsScope' of the code generation configuration. The setting of multiple packages
(and their sub-packages), classes (blocks) or actors can be archived via a comma separated
list of the fully qualified package, classes (blocks) or actor paths, e.g. "DesignSynthe
sisPkg::SecSysControllerPkg: :SecSysController,ActorPkg: :Card
ReaderEntry". The second property 'ModelBasedTesting.Settings.Requi
rementCoverageExcludedMetaClasses' of the same code generation
configuration, specifies via an "excluded meta classes tag with name and value" those
meta classes within the pre-selected packages, classes (blocks) or actors, who shall be
excluded from (not considered at) the requirements coverage calculation. Again the setting
of multiple "excluded meta classes tags with name and value" can be archived via a
comma separated list, e.g. "Attribute,Class, Event".

TestConductor distinguishes two kinds of requirement coverage by test cases:

full coverage
All model elements depending on a particular requirement (w.r.t. specified dependency
stereotypes) are covered by a test case or test context. The test case or test context then fully
covers the requirement - a dependency stereotyped fully on the requirement is added to the
Requirement Coverage Result Report of the test case or test context.

partial coverage
Not all model elements depending on a particular requirement (w.r.t. specified dependency
stereotypes) are covered by a test case or a test context. The test case or test context then only
partially covers the requirement - a dependency stereotyped partially on the
requirement is added to the Requirement Coverage Result Report of the test case or test context.

112

Transitivity of Dependencies (Refinement of model elements and
requirements)

Via the TestConductor property "Mode1BasedTesting.Settings.Requirement
CoverageTransitivityOfDependencies™ the support for the refinement of model
elements and the refinement of requirements (for the TestConductor requirement coverage
calculation) can be switched on or off.

/ optional via tag RequirementCoverage
optional via tag TransitivityOfDependencies switchable
RequirementCoverage
MransitivityOfDepen \

class b

dencies switchah&

req_sat

re

Req_2

Search Direction of the Algorithm

The figure above shows an application for the refinement of requirements and model elements.
If transitivity of dependencies is switched off, ME al is connected to Req 1.2, ME a2 is
connected to Req 2.2 and ME_a3 is connected to Req 2.3. But if transitivity of dependencies is
switched on, the refinements of ME_al by ME bl and of ME a3 by ME b2 and ME b4 are
considered during the requirement coverage calculation. This means, the requirement Req 2.3
for example is only fully covered by a test case or a test context if both model elements ME b2
and also ME_b4 are covered by this test case or test context (if class B is within the model
element scope).

If transitivity of dependencies is switched off the connections between the requirements
Req 2.1, Req 2.2 and Req_2.3 to the requirement Req_2 are not considered. But if transitivity
of dependencies is switched on the requirement Req 2 is refined by the requirements Req 2.1,
Req 2.2 and Req_2.3 and these refinements are considered at the requirement coverage

113

calculation. This means, the requirement Req 2 is only fully covered by a test case or a test
context, if the requirements Req 2.1, Req 2.2 and Req_2.3 are as well fully covered by this test
case or test context (if Req 2 is within the requirements scope).

An example explaining the transitivity of dependencies related to the handling of refined model
elements: A model element "A1" (class A) has a satisfy dependency to a requirement "req_17".
And there is a refinement of the model element "A1", as the two model elements "B1" and "B2"
(class B) have both a trace dependency to the model element "A1". And in the same way model
element "B1" is refined by the model elements "C1" and "C2" (class C) and model element
"B2" is refined by the model elements "C3" and "C4" (class C). If the property
"RequirementCoverageTransitivityOfDependencies" is set and
"RequirementCoverageModelElementScope" is only set to "class B", then the requirement
"req_17" is fully covered by a test case, if the test case covers all of the model elements "B1"
and "B2". But if the test case covers only one of the model elements "B1" and "B2", then the
requirement "req 17" is only partially covered.

An example explaining the transitivity of dependencies related to the handling of refined
requirements: A model element "A1" (class A) has a satisfy dependency to a low level
requirement "req LL 11". And this low level requirement "req LL 11" has on his part again a
satisfy dependency to a high level requirement "req HL._ _01". A model element "A2" (class A)
has a satisfy dependency to a low level requirement "req LL 22". And this low level
requirement "req LL 22" has on his part again a satisfy dependency to a high level requirement
"req HL O1". If the property "RequirementCoverageTransitivityOfDepen- dencies" is set and
the high level requirement "req HL 01" is within the requirement scope, then this high level
requirement "req HL 01" is fully covered by a test case, if this test case covers both the low
level requirements "req LL 11" and also "req LL 22" fully. But if a test case covers either the
low level requirement "req LL 11" or "req LL 22" only partially, then this high level
requirement "req HL. 01" is also only partially covered by this test case.

Computing Code Coverage

Computation of code coverage is supported only for Rhapsody in C++ and Rhapsody in C
when using assertion based testing mode.

Integration with CUnit/CppUnit Framework

In the area of testing, CUnit and CppUnit frameworks have become de-facto standards in
recent years. Many developers and companies have already organized their testing process
using these frameworks. In order to ease migration to a model driven development
approach, TestConductor offers a test integration for Rhapsody with the CUnit and
CppUnit frameworks.

* CUnit integration has been developed and tested using CUnit-2.1-0.
* CppUnit integration has been developed and tested using cppunit-1.12.1.

This integration is realized using stereotypes defined in the TestingProfile. The stereotypes
for CUnit integration are defined in subpackage RTC:: TestArchitecture::CUnit, whereas
the sterotypes for CppUnit integration are defined in subpackage

RTC::TestArchitecture:: CppUnit.

114

Stereotypes for CUnit integration

Stereotype CUnitContext can be applied to a class and sets some properties for CUnit
testing integration. You can change a test context to CUnitContext — and vice versa - by
right-clicking a test context and secting “Change to > CUnitContext”.

Stereotype CUnitConfig can be applied to a configuration and provides a set of tags for
customization of CUnit testing integration with Rhapsody. CUnitConfig overrides
property CG.Configuration.StartFrameworkInMainThread, s.t. the Rhapsody framework
ist started in a new thread and control returns to the main thread. Right after starting the
framework either a single test case is invoked or all test cases of the test context (only for
CUnitContextExecutionKind == NoRestart).

“Update TestCase”, “Update TestContext”, and “Update TestPackage” with respect to a
CUnitContext (refering to a confioguration stereotyped <<CUnitConfig>>) will
instrument the CUnitContext with a set of operations:

int cunit_init()—CUnit requires an initialization and a cleanup function for each
test suite. These functions are provided by TestConductor as prototypes, which can
be used to add application or test specific code.

int cunit_clean()--the test suite cleanup function.

void cunitmain(char* tc_name)—the main function for CUnit testing. The
function consists of :

e a framework initialization part

e atest suite specific part —i.e. a CUnitContext specific part

e a testoutputter definition part

e and a execution and result computation part — refered to as tail

Each of these parts can be customized using a tag of the <<CUnitConfig>>
configuration.

<testcontext-type>* setTestContext(<testcontext-type>* context)—Since test
cases may not have arguments in the CUnit framework,, they can not be invoked
with the ‘me’-pointer by the test context. Hence, a static variable is required, that
allows access to the test context data structure within test cases. Test cases can get
access to this data structure using the test context function ‘theTestContext()’.
Function ‘setTestContext()’ sets a static pointer variable, which then can be
returned by ‘theTestContext()’.

<testcontext-type>* theTestContext()— see above.

Init()—initializer that, in particular, invokes ‘setTestContext()’ with the ‘me’-
pointer in order to enable access to the test context data structure from within test
cases (see above).

The customization tags of stereotype CUnitConfig are:

CUnitContextExecutionKind-- Possible values: ‘RestartExecutable’,”NoRestart’.
This tag defines whether the application is restarted for each testcase, or all test
cases are executed within a single invokation of the application. Default is
‘RestartExecutable’.

CUnitIncludePath—defines the path to the headers of the CUnit framework. For
path definition, a symbolic variable SCUNITINSTALLDIR can be used. This
symbolic variable is textually substituted by the contents of tag CUnitInstallDir

115

upon “Update TestCase”, “UpdateTestContext”, and “Update TestPackage”,
respectively. Default: “SCUNITINSTALLDIR/CUnit/Headers”.

* CUnitlInstallDir—the full path to the installation directory of the CUnit
framework. For definition of the path, envronment variables, e.g. “$
(CUNITHOME)” can be used . Default: “$(CUNITHOME)”.

* CUnitLibPath—the full path to the CUnit framework library file. Default:
“$CUNITINSTALLDIR/CUnit/lib/CUnit.lib”.

* CUnitMainlInit— the initialization part of the cunitmain() function that will be
generated by “Update TestCase”, “Update TestContext”, and “Update
TestPackage”, respectively. For the default, please consult the TestingProfile.

* CUnitMainOutputter— test outputter specific initializations.
Default: “SRTCAUTOGENERATE”. If CUnitMainOutputter contains exactly this
string, TestConductor will automatically generate the respective code according to
the chosen output format.

* CUnitMainTail— defines the execution and result computation part of
‘cunitmain()’. For the default, please consult the TestingProfile.

* CUnitReportKind—possible values: ‘xml’, ‘html’, ‘text’. This tag defines the
result report format. Default: ‘html’

* InvokeExecutable—the content of this tag will be written to property
C_CG.Configuration.<activeEnvironment> and defines how the application will be
invoked.

Default: “Sexecutable $TestCase”, where “$TestCase” will be textually substituted
by the “Update ...” functionality with the name of the selected test case or “all”, if a
test context is going to be executed.

* PostFrameworkThreadSegment— the contents of this tag will be written to
property CG.Configuration.PostFrameworkThreadSegment. Using this tag it can
be customized how ‘cunitmain()’ will b invoked. Default: “char* tcname = argv[1];
cunitmain(tcname);”

* ReportFilename— the filename prefix of the report generated by CUnit. Default:
“$CONFIGDIR/report”, where “SCONFIGDIR” is a symbolic variable denoting
the code generation configuration refered to by the test context. “SCONFIGDIR”
will be textually replaced by the “Update ...” functionality.

* ResultFilename— the filename for the overall ‘pass/fail’ result. A CUnit test case
execution passes, iff all executed assertions pass; a CUnitContext execution passes,
iff all test cases pass; a TestPackage passes, iff all CUnitContexts pass.

Default : “SCONFIGDIR/result.txt”

* XSLTFile--- full path to the xslt file using which a html report can be generated
from a CUnit xml report.
Default : “SCUNITINSTALLDIR/Share/CUnit-Run.xsl”

Stereotypes for CppUnit integration

Stereotype CppUnitContext can be applied to a class and sets some properties for CppUnit
testing integration. You can change a test context to CppUnitContext — and vice versa - by
right-clicking a test context and secting “Change to > CppUnitContext”.

Stereotype CppUnitConfig can be applied to a configuration and provides a set of tags for
customization of CppUnit testing integration with Rhapsody. CppUnitConfig overrides

116

property CG.Configuration.StartFrameworkInMainThread, s.t. the Rhapsody framework
ist started in a new thread and control returns to the main thread. Right after starting the
framework either a single test case is invoked or all test cases of the test context (only for
CppUnitContextExecutionKind == NoRestart).

“Update TestCase”, “Update TestContext”, and “Update TestPackage” with respect to a
CppUnitContext (refering to a confioguration stereotyped <<CppUnitConfig>>) will
instrument the CppUnitContext with a set of operations:

void setUp()—CppUnit requires an initialization and a cleanup function for each
test case/test suite. These functions are provided by TestConductor as prototypes,
which can be used to add application or test specific code.

void tearDown()--the test suite cleanup function.

void cppunitmain(char* tc_name)—the main function for CppUnit testing. The
function consists of :

e a framework initialization part

e atest suite specific part —i.e. a CppUnitContext specific part
e atestoutputter definition part

e and a execution and result computation part — refered to as tail

Each of these parts can be customized using a tag of the <<CUnitConfig>>
configuration.

The customization tags of stereotype CppUnitConfig are:

CppUnitContextExecutionKind-- Possible values:
‘RestartExecutable’,”NoRestart’. This tag defines whether the application is
restarted for each testcase, or all test cases are executed within a single invokation
of the application. Default is ‘RestartExecutable’.

CppUnitContextExecutionKindReuseTestFixtureforNoRestart — Boolean
(default False) — using this tag, the user can specify whether the TestFixture shall
be reused for all test cases if CppUnitContextExecutionKind is '"NoRestart' or if a
new TestFixture will be created for each test case.

CppUnitIncludePath—defines the path to the headers of the CppUnit framework.
For path definition, a symbolic variable SCPPUNITINSTALLDIR can be used.
This symbolic variable is textually substituted by the contents of tag
CppUnitlnstallDir upon “Update TestCase”, “UpdateTestContext”, and “Update
TestPackage”, respectively. Default: “SCPPUNITINSTALLDIR/include”.
CppUnitlnstallDir—the full path to the installation directory of the CppUnit
framework. For definition of the path, envronment variables, e.g. “$
(CPPUNITHOME)” can be used . Default: “$(CPPUNITHOME)”.
CppUnitLibPath—the full path to the CppUnit framework library file. Default:
“$CPPUNITINSTALLDIR/lib/CppUnit.lib”.

CppUnitMainlInit— the initialization part of the cppunitmain() function that will
be generated by “Update TestCase”, “Update TestContext”, and “Update
TestPackage”, respectively. For the default, please consult the TestingProfile.
CppUnitMainOutputter— — test outputter specific initializations.

Default: “SRTCAUTOGENERATE”. If CUnitMainOutputter contains exactly this
string, TestConductor will automatically generate the respective code according to
the chosen output format.

117

* CppUnitMainTail— defines the execution and result computation part of
‘cppunitmain()’. For the default, please consult the TestingProfile.

* CppUnitReportKind—possible values: ‘xml’, ‘html’, ‘text’,’compilertext’. This
tag defines the result report format. Default: ‘html’

* InvokeExecutable—the content of this tag will be written to property
CPP_CG.Configuration.<activeEnvironment> and defines how the application will
be invoked.

Default: “$executable $TestCase”, where “$TestCase” will be textually substituted
by the “Update ...” functionality with the name of the selected test case or “all”, if a
test context is going to be executed.

* PostFrameworkThreadSegment— the contents of this tag will be written to
property CG.Configuration.PostFrameworkThreadSegment. Using this tag it can
be customized how ‘cunitmain()’ will b invoked.

Default: “p_$TestContext->cppunitmain(argv[1]);”, where the term “$TestContext”
will be textually substituted by TestConductor upon “Update ...”.

* ReportFilename— the filename prefix of the report generated by CppUnit.
Default: “SCONFIGDIR/report”, where “SCONFIGDIR” is a symbolic variable
denoting the code generation configuration refered to by the test context.
“$CONFIGDIR” will be textually replaced by the “Update ...” functionality.

* ResultFilename— the filename for the overall ‘pass/fail’ result. A CppUnit test
case execution passes, iff all executed assertions pass; a CppUnitContext execution
passes, iff all test cases pass; a TestPackage passes, iff all CppUnitContexts pass.
Default : “SCONFIGDIR/result.txt”

* XSLTFile--- full path to the xslt file using which a html report can be generated
from a CppUnit xml report.
Default : “SCPPUNITINSTALLDIR/contrib/xml-xsl/report.xsl”

Test Definition for CUnit/CppUnit

Code and flow chart test cases can be used very similar to their normal usage. Instead of
the RTC_ASSERT macros, for CUnit and CppUnit, CU_ASSERT macros and
CPPUNIT_ ASSERT macros, respectively, are used.

For CUnit also statechart test cases can be used similarly to their normal usage with
TestConductor, except for using CU_ASSERT macros instead of RTC_ASSERT macros.

For CppUnit, usage of statechart test cases requires some manual adaptions of the test
context and the statechart defining the test. The necessary adaptions are explained below.
We recommend using code and flow chart test cases also for testing reactive behavior (cf.
Testing reactive behavior with Code Test Cases, Testing reactive behavior with Flow Chart
Test Cases on page 50 pp.).

Both, CUnit integration as well as CppUnit integration do currently not support SD test
cases.

Using Statechart Test Cases with CppUnit

In the CppUnit framework assertions like CPPUNIT ASSERT are realized by throwing an
exception, when an assertion fails. This exception is caught by the framework and the
failed assertion is reported. The entire mechanism relies on the assumption that the test
case is executed in the same thread as the framework. CppUnit integration with
TestConductor utilizes a test context as test fixture, i.e. the CppUnit framework is
executed in the thread of the CppUnitContext. Statechart test cases are realized using a

118

separate test component owning the statechart, s.t. the statechart is exceuted in the thread
of the test component. Since these threads are in general not the same, it is necessary to
catch exceptions within the statechart and add failures to the testresult maintained by the
CppUnitContext.

Necessary modifications for statechart test cases with CppUnit:
1. Add public attributes

¢ CppUnit::TestSuite* suiteOfTests

¢ CppUnit::TestResult* theTestResult

to CppUnitContext

2. Overwrite tag CppUnitMainlInit:

CPPUNIT NS::TestResult testresult;

CPPUNIT NS::TestResultCollector collectedresults;
testresult.addListener (&collectedresults);
std::ofstream outfile;

// Original: local variable
/* CppUnit::TestSuite *suiteOfTests = new
CppUnit::TestSuite ("$TestContext") ;*/

//NEW: use CppUnitContext attribute
this->suiteOfTests = new
CppUnit: :TestSuite ("$TestContext") ;

CPPUNIT NS::TestRunner *testrunner = new
CPPUNIT NS::TestRunner () ;

//NEW: initialize attribute of CppUnitContext
theTestResult = &testresult;

3. add “cppunit/TestResult.h” to property CPP_CG.Class.Implncludes of test component
refered to by <<StatechartTestCase>> dependency of statechart test case

4. Instead of simply using e.g.

CPPUNIT_ASSERT(
itsTCon->getItsCalculator()->get_result op()==42),

in a transition action, you now should write:

CPPUNIT NS::Test* current tcase = 0;
CppUnitVector<CPPUNIT NS::Test*>& alltests =
(CppUnitVector<CPPUNIT NS::Test*>&)
(itsTCon->suiteOfTests->getTests());
CppUnitVector<CPPUNIT NS::Test*>::iterator it =
alltests.begin();
while (it != alltests.end()) {
1f((*it)->getName ()=="SC tc 0") {
current tcase = *it;

}

119

++it;
}
try {
CPPUNIT_ASSERT(
itsTCon->getItsCalculator()->get_result op()==42);

}
catch (CPPUNIT NS::Exception e) {
itsTCon->getTheTestResult () ->addFailure (
current tcase,
new CPPUNIT NS::Exception(e));

Command Line Execution

TestConductor can update, build, and execute TestCases, TestContexts or TestPackages
from the command line. Command line execution can either be performed by using the
command line feature of rhapsody.exe or by using rhapsodycl.exe (only on Windows,
TestConductor does not support rhapsodycl.exe on Linux).

Command Line Syntax for rhapsody.exe

You can use following syntax to execute tests from the command line:

e “<Rhapsody executable>” -cmd=open <model file>
-cmd=call "rtc TC COMMAND TC ELEMENT" -cmd=save -
cmd=exit
where TC_COMMAND is one of the following TestConductor commands

e update build execute

= performs an update, then a build, and then an execute on the
specified test element.

e update build

= performs a build, and then an execute on the specified test
element.

e update
= performs an update on the specified test element.
e checkUpdateRequired

= queries if an update of TC_ELEMENT is required. If an update is
required, the result TRUE is written to the log file cl.log (see
below), otherwise FALSE.

e build execute
= performs a build and then an execute on the specified test element
e build
= performs a build on the specified test element.
e e¢xecute
= performs an execute on the specified test element.
e clean update build execute

120

= performs a clean, then an update, then a build, and then an execute
on the specified test element.

e clean update build

= performs a clean, then an update and then a build on the specified
test element.

e clean_update

= performs a clean and then an update on the specified test element.
e clean

= performs a clean on the specified test element.

and TC_ELEMENT is either “all” or the full path name of a test case, a test context
or a test package.

TestConductor logs in the file “cl.log” in the project folder the command line
actions together with the result'’ (SUCCEDED, FAILED or ERROR' for actions,
TRUE, FALSE or ERROR for queries).

Note: -cmd=save needs to be defined in order to permanently actualize the link to the
HTML test result report (controlled file) and the Verdict tag under it. At this time
older test result files will not be overwritten, but a new file with an incremented
number will be created. In case the model will not be saved before exiting, still the
old or none result file will be referenced.

Note: When using rhapsody.exe also the -hiddenUI option can be used to run Rhapsody
and TestConductor with a hidden user interface. This is supported for Windows
and Linux.

Examples:

e “<full Rhapsody path>\rhapsody.exe” -cmd=open <path to
Rhapsody
samples>\CppSamples\TestConductor\CppTestActions\CppTes
tActions.rpy —cmd=call “rtc update build execute
TPkg Calc::TCon Calc Architecture::TCon Calc::SD tc 0”
-cmd=save
updates, builds, and then executes the TestCase “SD_tc_0” of the sample model
CppTestActions. After test execution the model is saved, Rhapsody is not
terminated.

e “<full Rhapsody path>\rhapsody.exe” -cmd=open <path to
Rhapsody
samples>\CppSamples\TestConductor\CppTestActions\CppTes
tActions.rpy —-cmd=call “execute
TPkg Calc::TCon Calc Architecture::TCon Calc” -cmd=save
executes the TestContext “TCon_Calc” of the sample model CppTestActions.
After test execution the model is saved, Rhapsody is not terminated.

e “<full Rhapsody path>\rhapsody.exe” -cmd=open <path to
Rhapsody
samples>\CppSamples\TestConductor\CppTestActions\CppTes

"In the format <command> <parameter> : <result>.
"' After the keyword ERROR a description about the problem will be given in parentheses.

121

tActions.rpy —-cmd=call “rtc build execute TPkg Calc”
-cmd=save

builds and executes the TestPackage "TPkg Calc” of the sample model
CppTestActions. After test execution the model is saved, Rhapsody is not
terminated.

Command Line Syntax for rhapsodycl.exe

If you run the command line version of rhapsody, rhapsodycl.exe, you can execute the
same TestConductor commands as for rhapsody.exe. In rhapsodycl.exe, the TestConducror
commands are invoked by specifying

e -cmd=call “rtc TC COMMAND TC ELEMENT”

in the command line prompt of rhapsodycl.exe (or in a file containing the list of
commands for rhapsodycl.exe). TC_ COMMAND can be one of the following
testconductor commands:

e update build execute

= performs an update, then a build, and then an execute on the
specified test element.

e update build

= performs a build, and then an execute on the specified test
element.

e update
= performs an update on the specified test element.
e CheckUpdateRequired

= queries if an update of TC_ELEMENT is required. If an update is
required, the result TRUE is written to the log file cl.log (see
below), otherwise FALSE.

e Dbuild execute
= performs a build and then an execute on the specified test element
e build
= performs a build on the specified test element.
e cxecute
= performs an execute on the specified test element.
e clean update build execute

= performs a clean, then an update, then a build, and then an execute
on the specified test element.

e clean update build

= performs a clean, then an update and then a build on the specified
test element.

e clean_update

= performs a clean and then an update on the specified test element.
e clean

= performs a clean on the specified test element.

122

and TC_ELEMENT is either “all” or the full path name of a test case, a test context or
a test package.

TestConductor logs in the file “cl.log” in the project folder the command line actions
together with the result (SUCCEDED or FAILED for actions, TRUE or FALSE for
queries).

Examples (we assume that rhapsodycl.exe is already started and the model has been
opened):

e “> -cmd=call “rtc update build execute
TPkg Calc: :TCon_Calc_ArcEitectare: :TCon Calc::SD _tc 0”
updates, builds, and then executes the TestCase “SD_tc 0 ” of the sample
model CppTestActions.

e "> —cmd=call “execute
TPkg Calc::TCon Calc Architecture::TCon Calc”
executes the TestContext “TCon_ Calc” of the sample model CppTestActions

Note: TestConductor does not support rhapsodycl.exe on Linux.

Test Execution Report

After test execution all test reports are written in the same manner as described under
“Test Case Execution”, ”Test Context Execution” and “Test Package Execution”.

Test Case Execution on Targets

In addition to executing test cases on the host environment, test cases can also be executed
on the target environment. The necessary steps are target environment specific and are
further described in the following documents:

* Testing with RTC on a Linux_ Target.pdf (Linux)
* Testing with RTC on_a VxWorks Target.pdf (VxWorks)

* Testing with TestConductor on a small target.pdf (generic environment)

Driving Operations Calls

Driving Operation Calls

To be able to call operation calls from the environment in TestConductor, we have to set
the Enable Operation Calls option in the dialog Advanced Instrumentation Settings as
Public, Protected or All and recompile/rebuild the model.

123

Advanced Instrumentation Settings E

~ Trace
W Arguments v atributes ¥ Events

¥ Operations ¥ Relations

Enable Operation Calls: IPubH: 'l

~ Instrumentation Scope

" Al Elements
' Selected Elements

- L] Default

o oE

i MyClass

1 ok I Cancel

X

This setting controls the property CG:Operation:AnimAllowInvocation. Following
are the details of the options that can be used:

None (Default)—do not enable calls

Public—enable calls if operation is public
Protected—enable calls if operation is public or protected
All—enable calls in all cases

124

Test Management

TestConductor is a fully integrated add-on solution for Rhapsody. All relevant test data
like the test architecture, test cases and their test scenarios, test configurations and test
results are stored in the model. Navigation to all the elements can be done via the usual
capabilities of the Rhapsody browser.

Managing Test Data

With this tight integration you have all the possibilities you already know from other
elements like classes, package and so on, e.g.:

* Copy, paste, delete
* Create units for test components, test context, SUT and test component instances

* Load/unload test packages, test components, test context, SUT and test
component instances

* Requirements management
* Configuration management
* Documentation

Linking Test Case to Requirements

Test cases can be linked to their requirements which are defined in the model. This can be
done by using test objectives (TestObjective) to link model elements to the related
requirements.

* Add a new test objective to the test case “tc_SimpleStart” and select the
requirement from the listed model elements.

125

Eg) TestContexts
Eﬁi TCon_CashReqisker
- attributes
H-Ly Links
gy SUTs
H-- g Test Context Diagrams
I_f_l---xv- TestZazes
- B ko_activity_diagram()
¢ ko_codel)
H be_Flow_chart()

08B E
¥ o

w
B quence_diagrami]
“p SDInstances Features
[5 TestResults Features in Mew Window
- @ TestComponentInstances -
[y, TestConfigurations et DEEE”C!E”':V
B3 TestResults cenreh Derivation
- By Testscenarios . Canstraint
References, ., Comn_nant
Requirerent
hange ko k Conkrolled File
Edit Test Case Hyperlink.
Delete From Model Ackivicy Diagram
Edit TestCase SDInstances Tag
Update TestZase TestingPro

Build TestCase
Execute TestCase

Cancel | Help |

The result is a new test objective REQ1 as an element of test case “tc_SimpleStart” which
is linked to its requirement REQ1.

126

B-EF TestPackages

EllJ;'I, TPkg_tCashRegister_0

i, TestCompaonents

I_'—_Iﬁi TestContexks

=-f9 TCon_CashRegister

- attributes

&Ly Links

- SUTs

7] Test Conkext Diagrams

%, TestCases

B ke_activity_diagrami)

-#. be_code)

% be_SimpleStartk()
E]':'-‘IjI SDInstances
EIHV TestObjectives
Ty
E]EI' TestResults

[]---‘ TestComponentInstances

[]---“), TestConfigurations

[]Er TestResults

[EI---.E—'% TestScenarios

- TPka_GuiHardware_0

TestConductor Dialog

The TestConductor main dialog provides some global TestConductor settings and help
functions by selecting Tools > TestConductor from the Rhapsody tools menu:

Rhapsody TestConductor n
Help

Global Settings

CreateTestirchitecturebd ode Standard W
CreateT estirchitecture Transparency BlackBox W
Architecture using global objectz Falze W

b apSOToT estdrchitecturebode Strict W
OverwriteT estContextDiagram Mewer W
ReplacementCreationtode W rapper W
TestCazeE wecutionOrder BrowzerOrder v
Testingtd ode Azzertionk ased v
Part rurber far coverage reparts B0001

127

The dialog offers the possibility to set some global TestConductor settings and to open
TestConductor’s tutorial by selecting Help > Tutorial. The global settings that can be
changed in this dialog are explained in the next section TestConductor Settings.

TestConductor Settings

TestConductor provides a range of global and also test case specific settings. The settings
are in most cases stored as properties in the model.

128

Bl TestConductor

=l SDInstance
Executionlterations 1
ExecutionMode Monitor
ExecutionOrder Linear
Parameteryvalues

=l Settings
AcknowledgeApplyChanges
Create TestArchitectureMode Standard
Create TestArchitecture Transparency GreyBox
CreateTestArchitectureUsingGlobalObjects
MapSDToTestArchitectureMode Strict
Owverwrite TestContextDiagram Mever
ReplcementCreationMode Wrrapper
ReportLocation
TestCaseExecutionOrder BrowserCrder
TestingMode AcsertionBased

=l TestCase
AnimatedsuT Autormatic
ATGTestCase O
CalloperationsOnlyWhenCallstackEmpty
ComputeCoverage [l
CoverageKind SUT flat
CreateSDForFailedSDInstance O
DriveMessages ToTestCompaonents D
ExecuteTestWith Tracer O
ExecutionAnimationStarted Timeout 20
ExecutionAnimationStopped Timeout 20
ExecutionFirstIdle Timeout 20
ExecutionIdle Timeout 600
MultipleConditionCheck O
ResetAppBeforeStart Test
TerminateAppOnQuitTest
Tolerances
UseOM_RETURN O
Write TestExecutionLogFile O

| TestContext
TestContextExecution_PostTestCaseOperation
TestContextExecution_PreTestCaseOperation
TestContextExecution_RestartExecutable

129

Sequence Diagram Properties

TestConductor provides settings concerning the usage and interpretation of sequence
diagrams during test case execution. All following properties are the settings for the dialog

Define Test:

Define Test

M ame of Test:

Degcription of Test:

Cancel

SDInztances in Test:

E
| B |

Detailz of SDInstance

SDInstance Mame:

&dd SDInstance ‘

Sequence Diagram:

Apply SDInstance ‘

Execute S0Instance az:
SD Interpretation [Order):
Execution Mode

* Single [keration

" Multiple Iterations

* Monitor Only ¢ Driver and Maniter © 5

* Parlial " Linear

bax # af Muliple [terationz [0 == infinite]

j Farameter Mapping ‘

~

Activation Condition:

Dezcription of S0Instance:

These settings have to be done via properties on SDInstance level. Open the Feature
dialog of a sequence diagram instance, select the Properties tab, switch in the dropdown
combo box View to A/l and navigate to the metaclass TestConductor: :SDInstance

=| SDInstance
Executionlterations 1
Executioniode Monikor
ExecutionOrder Linear

Parameteralues

130

TestConductor: :SDInstance: :ExecutionIterations

The required number of run-time instances can be set to multiple iterations with a concrete
number.

Note: This property should not be set directly. Please use the Multiple Iterations setting
in the Define Test dialog.

TestConductor: :SDInstance: :ExecutionMode

Driver invokes automatic driving of model execution after the test has been activated.
TestConductor automatically injects events into the running Rhapsody model according to
the specified sequence diagram. Monitor invokes manual driving of model execution.
This means that, during test execution, you must inject input events manually using the
Rhapsody animation tool or the project GUI (when available). TestConductor monitors the
reception of these events and internal messages between system objects. Blackbox
considers only those messages that originate at the system border (to be driven by
TestConductor) or that go to the system border (to be monitored by TestConductor).

Note: This property should not be set directly. Please use the corresponding Execute
SDInstance as: setting in the Define Test dialog.

TestConductor: :SDInstance: :ExecutionOrder

Linear—specifies that TestConductor should monitor the sequence diagram under test
assuming that all events and messages are arranged in a strict sequence. The vertical
drawing order of messages in sequence diagrams is used to compute an absolute sequence
of events and messages (each message in the in sequence diagram has a unique
predecessor and successor). Partial—specifies that TestConductor should monitor only
the order of events located on the same line (instance line or message arrow).

Note: This property should not be set directly. Please use the corresponding SD
Interpretation (Order): setting in the Define Test dialog.

TestConductor::SDInstance: :ParameterValues
For a parameterized Rhapsody sequence diagram, map its parameters to concrete values.

Note: This property shall not be set directly. Please use the button Parameter Mapping
in the Define Test dialog.

131

General Properties

TestConductor provides some general settings that change the general behavior of
TestConductor. These settings have to be done via properties on test package level. Open
the Feature dialog of a test package, select the Properties tab, switch in the dropdown
combo box View to A/l and navigate to the metaclass TestConductor: :Settings

S tesiconductor |
=l Settings
AcknowledgeApplyChanges
Create TestArchitectureMode Standard
Create TestArchitecture Transparency BlackBox
Create TestArchitectureUsingGlobalObjects | 1
MapSDToTestArchitectureMode Strict
Cwerwrite TestContextDiagram Mever
ReplcementCreationMode Wrapper
ReportLocation
TestCaseExecutionCrder BrowserOrder
TestingMode AssertionBased

TestConductor: :Settings: :AcknowledgeApplyChanges

If this property is switched on, TestConductor requires an explicit acknowledge from the
user each time a SDInstance has been changed. If the property is switched off, changes of
SDInstances are acknowledged implicitly.

By default this property is switched on.

132

i1
Mame of Test:
Itc:_S impleStart LI
Cancel |
Description of Test:

o _Tokerces |
Tolerances

I =l

SDInstances in Test: Execute Test |

&dd SDInstance
x| SOl |
Remave SDInstance |

. ! Cancel discards changes. Really cancel?
r— Details of SDInstance .

SDinstatice Name:

ISD_tc_1 Ja I Hein | I Apply SDInstance |

Sequence Diagram:

I SimpleStart in TPkg_CashRegister_0 j Parameter Mapping |
=
=l

Execute SDInstance ast (Moritor Only % Driver and Monitor & Elack-Boy
SO Interpretation [Qrder): € Partial & Lingar
r~ Execution Mode

& Single Iberation : : P
||j Iz # of Multiple Iterations [0 == infinite]
 Multiple Iterations

= Ordered Predecessor: I

Activation Conditiorn:
|THUE

— Description of SDnstance:

TestConductor::Settings: :CreateTestArchitectureMode

This property controls the behavior of the TestConductor function “Create
TestArchitecture”. If this property is set to “Standard”, each time “Create
TestArchitecture” is performed TestConductor creates a component and a configuration
for the newly created TestArchitecture using the default property settings for components
and configurations. If the property is set to “Advanced”, each time “Create
TestArchitecture” is performed TestConductor opens a dialog which allows to specify
from which of the existing components/configurations the property values of the newly
created component/configuration shall be derived. Furthermore, if the property is set to
“Advanced” and TestConductor: :Settings: :TestingMode is “AssertionBased”,
TestConductor offers the user a possibility to define the kind of each TestComponent in
the TestArchitecture to be created.

By default this property has the value “Standard”.

TestConductor::Settings::CreateTestArchitectureTransparency

By default, TestArchitectures are created as 'BlackBox' architectures, i.e. the SUT is
only external communication of the SUT is observable for testing. Internal communication
such as self invocation of operations, communication among parts of the SUT is not
considered in sequence diagram test cases.

If CreateTestArchitectureTransparency is set to 'GreyBox', then a copy of the selected
SUT will be created in the TestArchitecture that can be instrumented for testing purposes.
Testing such a grey box <<Test SUT>> replacement instead of the original SUT model
element enables TestConductor to instrument also the SUT model elements with

133

assertions, s.t. self messages and communication among parts of the SUT can be
considered in test cases.

TestConductor::Settings: :CreateTestArchitectureUsingGlobalObjects

Since Rhapsody 8.1.4, TestArchitecture creation can optionally use global objects instead
of parts for SUT classes and TestComponent instances. Fundamental support for global
instantiation outside the TestContext gives way for grey box testing of implicit objects and
stubbing of implicit objects and in particular also <<Singleton>> objects. Note, that
parts of class can't be associated with global objects — at least, such associations can't be
instantiated using links, since such links would cross class boundaries of the composite
parent class of the involved parts. On the other hand 'classical' TestArchitectures using part
instantiation, can't deal with implicit obejcts and singleton objects in test component roles.
Thus, it is recommended to use global object instantiation if implicit objects or singleton
objects are involved in the testing process.

TestConductor::Settings: :MapSDToTestArchitectureMode

This property controls the behavior of the test case wizard when a test case is created for
an existing sequence diagram. If the value of this property is set to “Strict”, only those test
architectures are considered to be suitable for the new test case that contain at least on
SUT instance of one of the classes of the life lines of the original sequence diagram. If the
value of this property is set to “Weak”, also all test architectures are considered to be
suitable that does not contain a SUT instance of one of the classes of the life lines of the
original sequence diagram, but for which the same message exchange is possible as in the
original sequence diagram.

TestConductor::Settings::overwriteTestContextDiagram

This property controls the creation of TestContextDiagrams when performing an “Update
TestArchitecture” on a TestContext. If this property is set to “Never”, each time “Update
TestArchitecture” is performed a new TestContextDiagram is added to the existing
TestContextDiagrams, i.e., existing TestContextDiagrams are not overwritten. If this
property is set to “askUser”, each time “Update TestArchitecture” is performed
TestConductor asks if an existing TestContextDiagram shall be replaced with a new one. If
this property is set to “Always”, each time “Update TestArchitecture” is performed
TestConductor replaces an existing TestContextDiagram with a new one.

By default this property has the value “Never”.

TestConductor: :Settings: :ReportLocation

With this property'? TestConductor can be instructed to store test reports and results not in
the default location directly underneath the test element (TestPackage, TestContext,
TestCase) but at a location chosen by the user. The location has to be a (test-) package,
which will be created if not existing yet. For nested packages the qualified name has to be
specified using the delimiter "::' (e.g. “MyResults::Results MR1”).

Affected by this property are Test Execution Results, Model Coverage Results,
Requirement Coverage Results and Code Coverage Results. Underneath the test element a
hyperlink will be created" targeting the actual result. If the property expression can not be

"“Property will be evaluated not only on project but also also on package level.
PHyperlink will be created only for test elements which can be written.

134

parsed or the specified package could not be created, the results will be saved at the
default location underneath the test element.

Beside fixed package names TestConductor provides the following keywords which will
be substituted with the appropriate names of the execution context:'*

$TESTPACKAGENAME: Will be substituted by the name of the TestPackage'® of the
executed element.

$TESTCONTEXTNAME: Will be substituted by the name of the TestContext of the
executed element. Will be ignored for Testpackage results.

$TESTCASENAME: Will be substituted by the name of the executed TestCase. Will be
ignored for TestPackage and TestContext results.

$CONFIGURATIONNAME: Will be substituted by the name of the testing configuration
which was active at test execution. Will be ignored for TestPackage results.

TestConductor::Settings: :TestCaseExecutionOrder

This property controls the execution order of TestCases when executing a TestContext.
Possible values are “BrowserOrder” and “DeclarationOrder” , where “BrowserOrder”
defines that TestCases areb executed in the same order as they are displayed in the
browser. “DeclarationOrder” defines execution in a user defined order. The declaration
order can be specified by right-clicking “TestCases” and selecting “Edit TestCases Order”
form the context menu.

By default this property has the value “BrowserOrder”.

E||:1, TestPackages
E"E,ﬁ TPhkg_CashRegister
=-{Z3] Components
-] TPkg_CashRegister_Comp
ED Configurations
‘\‘ DefaultConfig
[[gff, TestCompanents
aﬁ; TestContexts
(=4 TCon_CashRegister
[Links
...f SUTs
ﬁ'i Test Context Diagrams
E-%

m

| #-®s sD_tc 0]

‘ TestComponentinstanoes
q:, TestConfigurations
-y, TestScenarios

"“Note that the keywords may only be used to specify a complete package name, keywords may not be modified
(e.g. correct: “Results::$STESTPACKAGENAME”, incorrect: “Results:STESTPACKAGENAME 17)
"The outer TestPackage in assertion based mode

135

“Edit TestCases Order” opens a dialog using which the order of TestCases can be defined:

Edit Operations Declaration Order

[T Use Default Order

L |

TestConductor::Settings: :TestingMode

Signature | Heturn Tupe | "izibilky | Scope

SO ot 0N wioid oublic instance

FC tc 0N wioid oublic instance

Code tc 0N wioid oublic instance
aF. Cancel |

Drawr |

Help |

By default, new test architectures created with Rhapsody 7.6 or higher are created with

testing mode set to assertion based testing, i.e., the property

“TestConductor.Settings. TestingMode” is set to “AssertionBased”. For details regarding
the testing modes supported by TestConductor see “Choosing between testing modes” on

page 99.

To create a new test architecture for animation based testing, open the TestConductor main
dialog by choosing “TestConductor” from the tools menu. In the upcoming dialog, select
the testing mode you want TestConductor to apply for a newly created test architecture.

This setting does not affect any existing test architecture.

136

x|

Rhapsody TestConductor n

Help

[Global Settingz

CreateT estbrchitecturetode Standard W
CreateT estbrchitecture Transparency BlackBox W
Architecture ugsing global objects Falze W
tapS0ToT estérchitecturebd ode Strict W
OwenanteT estContextDiagram Mewer W
R eplacementCreationkd ode W rapper W
TestCazeE vecutionOrder BrowserOrder W

Testingtdode Azzertionk ased

Puart rumber for coverage reparts &0001

Cancel

Test Context Properties

Also some properties for test contexts can be set by the user. In order to change these
properties, open the Feature dialog of a test context, select the Properties tab, switch in

the dropdown combo box View to 4// and navigate to the metaclass
TestConductor: :TestContext

= TestConductor

=l TestContext
TestContextExecution_PostTestCaseCperation
TestContextExecution_PreTestCaseCperation
TestContextExecution_RestartExecutable

TestConductor::TestContext::TestContextExecution RestartExecutable

If this property is checked (true), for each test case during execution of the test context, the
executable of the test context is restarted. If the property is not checked (false), the test
cases are executed without restarting the executable after the previous test case has
finished its execution.

TestConductor: :TestContext::TestContextExecution PreTestCaseOperation

If this property contains a name of an operation of the test context, for each test case
during execution of the test context, before a test case is executed the operation specified

137

in this property is called automatically. In the operation specified in this property, one can
initialize or reset some variables that are needed in the subsequent test case execution.

TestConductor: :TestContext::TestContextExecution PostTestCaseOperation

If this property contains a name of an operation of the test context, for each test case
during execution of the test context, after a test case is executed the operation specified in
this property is called automatically. In the operation specified in this property, one can
reset some variables that are needed in the subsequent test case execution.

Test Case Properties

Also some properties for test cases can be set by the user. Some of these properties are set
directly by using the execution dialog, some properties you may set using the feature
dialog of a test case. Open the Feature dialog of a test case, select the Properties tab,

switch in the dropdown combo box View to A// and navigate to the metaclass
TestConductor: :TestCase

-\ TestConductor

-l TestZase
AnimatedsSUT Atomatic
ATGTestCase O
Calloper ationsOnlywhenCallstackEmpty
ComputeCoverage O
Coverageklind SUT flat
CreateSOForFailedSDInstance O
ExecuteTestwithTracer O
ExecutionanimationStartedTimeout 20
ExecutionanimationStoppedTimeout 20
ExecutionFirstdiaTirmeout 20
ExecutionldleTimeout 600
MultipleConditionCheck O
ResetippReforeStartTest
Ter minatesppOnuitTest
Tolerances
UseOk_RETURM O
WiriteTestExecutionLogFile O

TestConductor: :TestCase: :AnimatedSUT

This property controls the assumptions of TestConductor concerning the animation of the
SUT classes. Depending on the fact that the SUT classes are animated or not,
TestConductor uses different execution algorithms to control the execution of test cases
that are needed in order to execute test cases properly. If this property is set to
“Automatic”, TestConductor tries to automatically deduce if the SUT contains animation
code or not, and chooses the right execution algorithm accordingly. If the property is set to
“true”, TestConductor assumes that the SUT classes contain animation code. If the

138

property is set to false, TestConductor assumes that there is no animation code for the SUT
classes.

Per default the property is set to “Automatic”.

TestConductor: :TestCase: :ATGTestCase

Normally TestConductor injects messages that are defined in a sequence diagram without
time delays directly one after the other. In case this property is enabled, TestConductor
waits with injection of messages until the system is idle.

This property is enabled automatically for test cases created and exported by ATG.

Per default the property is disabled.

TestConductor:TestCase:CallOperationsOnlyWhenCallstackEmpty

If this property is checked, TestConductor delays operation calls that refer to inputs of
TestConductor so that these operation calls are made only when the call stack of the focus
thread is empty.

If the property is cleared, all operation calls are made by TestConductor immediately even
if the call stack of the focus thread is not empty.

Per default the property is disabled.

TestConductor: :TestCase: :ComputeCoverage

In case this property is enabled, TestConductor automatically computes and reports the
model coverage achieved when executing the test cases.

Per default the property is disabled.

TestConductor: :TestCase: :CoverageKind

If TestConductor: :TestCase: :ComputeCoverage is enabled, CoverageKind
defines how the coverage will be measured:

TestConductor supports four different kinds of coverage measures:

» SUT flat: Only coverage of the toplevel class of the SUT is measured, i.e. states,
transitions, and operations of parts of the SUT are not considered. Coverage of
model elements of test components is also not measured.

* SUT hierachical : Coverage of the SUT is measured in a hierarchical manner, i.e.
also states, transitions, and operations of parts of the SUT are hierarchically
regarded for coverage measure. Coverage of model elements of test components is
again not measured.

» TestContext flat: Coverage is measured in terms of all states, transitions, and
operations defined at the first decomposition level of the test context, i.e. all

139

states, transitions, and operations of the direct parts of the test context are
considered.

* TestContext hierarchical : all states, transitions, and operations in the hierarchal
structure of the test context are considered in coverage measure.

Per default the property is set to “SUT flat"..

TestConductor: :TestCase: :CreateSDForFailedSDInstance

In case this property is enabled, TestConductor automatically creates a failure sequence
diagram (Show as SD) and stores it in the model.

Per default the property is disabled.

TestConductor: :TestCase: :ExecuteTestWithTracer

In case this property enabled, the execution of this test case will be done with activated
tracer (trace #all all).

Per default the property is disabled.

TestConductor: :TestCase: :ExecutionAnimationStartedTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to
connect to Rhapsody. If the application does not connect to Rhapsody within the specified
time, the test case execution is aborted. The default value is 20 seconds.

TestConductor: :TestCase: :ExecutionAnimationStoppedTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to
terminate after receiving the terminate command from TestConductor. If the application
does not terminate within the specified time, TestConductor simply proceeds. The default
value is 20 seconds.

TestConductor: :TestCase: :ExecutionFirstIdleTimeout

Defines the time (in seconds) that TestConductor waits for the animated application to
become idle after giving the first “Go Idle” command. If the application does not become
idle within the specified time, the test case execution is aborted. The default value is 20
seconds.

TestConductor: :TestCase: :ExecutionIdleTimeOut

In case a timeout is defined (> 0) and the application does not show any activity for the
defined timeout (in seconds) the execution of this test case is interrupted.

The testing profile defines a global timeout, which can be overwritten for every test
package, test context and test case. This default value in the testing profile is 600 seconds.

Setting this property to zero means that no timeout is enabled.

TestConductor: :TestCase: :MultipleConditionCheck

140

TestConductor can be configured to check the reached condition and following conditions
without system activity, until one condition mark evaluates to FALSE. To change the
default TestConductor behaviour change the property

TestConductor: :TestCase: :MultipleConditionCheck of the test case to TRUE.
For further information read the chapter Condition Marks at page 167.

Per default the property is FALSE.

TestConductor: :TestCase: :ResetAppBeforeStartTest

In case this property is enabled, TestConductor will reset the application to the initial state
of the model for each test case execution. Normally this property is set using the test
execution dialog for sequence diagram based test cases.

Per default the property is enabled.

Note: This property is available for sequence diagram test cases only. This property is
currently not interpreted for source code, flow chart and statechart test cases.

TestConductor: :TestCase: :TerminateAppOnQuitTest

This property controls the behavior of TestConductor after quitting a test. In case this
property is enabled, the application terminates after quitting the test. Otherwise only
TestConductor quits.

Per default the property is enabled.

Note: This property is available for sequence diagram test cases only. This property is
currently not interpreted for source code, flow chart and statechart test cases.

TestConductor::TestCase::Tolerances

This property is an internal property where TestConductor stores tolerance definitions
defined in the sequence diagram test definition dialog. User should not set this property
directly.

Note: This property should not be set directly. Please use the corresponding Tolerances
button in the Define Test dialog.

TestConductor: :TestCase: :UseOM RETURN

In case this property is enabled, TestConductor checks return values by evaluating a
specific animation message that is generated by the application if the operation whose
return value should be checked uses the animation macro OM_RETURN. If this property
is disabled, TestConductor can only check return values for operation calls that originate
from TestComponents.

Per default the property is disabled.

TestConductor::TestCase: :WriteTestExecutionLogFile

141

TestConductor generates a log file of the test case execution if this property is enabled.
TestConductor stores this log file (RTC log.txt) into the folder C: \ tmp. The folder
must exist and the user must have write access to this folder.

Per default the property is disabled.

Generating Test Reports with Rhapsody
ReporterPLUS

Rhapsody ReporterPLUS is a reporting engine. The user is able to customize the content
and style of a Rhapsody ReporterPLUS report by specifying a template. Rhapsody
TestConductor delivers the test report template (TestReport.tpl) and the test
requirement coverage report template (TestRequirementCoverage. tpl), which will
be installed in the folder “reporterplus\Template” in your Rhapsody installation.

:\Dokumente und Einstellungen\tschriefer\Desktop\Cash\Re ports\TPkg_CashRegister. htm - Microsoft Internet E... .

Datei Bearbeiten Ansicht Favoriten Extras 2 -

@Zumck M > | \ﬂ \ELI _;‘J /.._ESuchen ‘:1\'(Favariten Q-f; v \,;] - _I ﬁ

Adresse @ C:\Dom;ne;t_e u-nd Einstellung_en'l,tschrieFer'l,Desktop'l,Cash'l,Reports'l,TPkg_CashRegister.htm Vi —) Wechselnzu Links »
N | Test Report of Model CppCashRegister

[=IES] T=st Report of Model
= B Tcon_CashRegister k
[Z1 System Under Test (SUT)
(23 Test Component Instances
[_] Test Context Diagrams

{Report created at 7/17/2007 at 16:41:04)

El 3 TestCases Project CppCashRegister.rpy
& TestCaseAD_tc_0 T C:%Programme’TelelogichRhapsady 7.1
& TestCase Code_te_0 Y “Samples\CppSamplestTestConductor\CppCashRegister

§ TestCase5D_tc 0
B Testcase atg_te_ooz
B TestCase atg_te_003

Lanquage |C++

This is the CashRegister exercise model for the
Rhapsody TestConductor and ATG tutorial, It is

& TestCase atg_te_004 e based on the model from M.\ . Richardson and shows
& TestCase aty_te_006 Description | .- ain aspects of the Testing Profile

B TestCase atg_te_007 implementation firstly delivered with

B TestCase atg_te_00g Rhapsody TestConductor 2.0,

B TestCase atg_tc_00g
B TestCase atg_te_010
B TestCase atg_te_013
B TestCasze atg_te_014

B TestCase aty_te_015 This document contains the test contexts
B TestCasze ato_tc_016 - - - -
& Test Case aty_te_017 TCon_CashRegister |in TPkg_CashRegister:: TCon_CashRegister

I EHHEEE

B TestCaszetesteaze_3

@ Applet com/synergex/modeleveqi TOC/DirectMavigatar started j Arbeitsplatz

Note: The report templates currently will not show pictures of subscenarios or linked
subscenarios of test cases. Only the top level diagrams of scenarios and flow
charts are currently displayed.

Executing the Test Report

To execute the test report template on the model containing test data:

* In case you want to create the report only for a selected test package and the
containing test packages, select in the Rhapsody browser a test package and choose
from the menu Tools > ReporterPLUS > Report on selected package...

142

- TestPackages
=R §1Fka CashRedister
+-[_7] Components
+ I:l Sequence Diagrams
+ _j TestComponents
=¥ TestContexts
—|-49 TCon_CashRegister

In case you want to create the report for all test packages in the model choose from
the menu Tools > ReporterPLUS > Report on all model elements...

In the Rhapsody ReporterPLUS wizard Select Task specify the export file format
your report shall be displayed in and click Next>.

ReporterPLUS Wizard : Select Task

YWhat would you like to do’

Generate Microzoft PowerPoint Prezent ation
Generate Microsoft \Word Document
aenerate RTF File

Generate Text File

| Weiter » &! Abbrechen

In the Rhapsody ReporterPLUS wizard Select Template check the currently active
template. In case the template “TestReport.tpl” is not active click on “...”,
open it from the folder “reporterplus\Templates” in your Rhapsody
installation folder and click Next>.

143

Open Template

Suchenin: |‘j dliemplales j i Template Description
|®] requirementsTable. tpl % bl Thiz template uzes the TestingPrafile ta A
= g provide the underlying stereotypes to]
@ Rhapsody HTML Exporter . tpl TestRequirementCoverage. tpl Sl A
m SequenceliagramiwithClasses, tpl Typ: TPL-Datei .tpl
|®] statechart.tpl Geandert am: 11,09,2007 21:04 The main sections the document
@ SysMLrepart bl Grife: 33,0 KB EL?SE:;JCBS are in the following order [if they
@ TestRadio_original.tpl 1/ Test Context Informations
24 Syztem Under Test [SUT)
< |3 |34 Test Component Instances
= 44 Test Context Diag_rams
Datei : : 5/ Test Cagze Execution Summ_al_l,J
SIS |TEStH epart ol Ofnen B/ Test Caze General Informations
. 7/ Test Case Implementation|-diagrams)
D ateityp: |Templale files [*.tpl) lJ Abbrechen
The document produced iz hyperlinked «»

* The Rhapsody ReporterPLUS wizard Confirmation gives an overview about the
selected options. Click the button <Back to change the options. Click Generate to
start the execution of the Rhapsody ReporterPLUS report generation.

ReporterPLUS Wizard : Confirmation

o want ko

Generate HTML Page

Llzing template

C:5ProgrammehT elelogichBhapzody 7.1 reporterpluzh T emplateshT estB epart tp
From rodel

C:AProgramme’T elelogichRhapzody 7145 amples\CppS ampleshT estConductor
ith zcope

TPkg_CazhFegister:Packagel

< Zurick | Fertig stellen | Abbrechen
b

* In the dialog Generate Document specify a path and a name for the document to
generate and click the button Generate.

144

Generate Document

Speichem ||.'j'.‘ Reports LJ - ﬁ Ex-

Dateiname: | TPkg_CashFiegister |
D ateityp: | HTHL Page [*.htrl;” htm] j Abbrechen

* Rhapsody ReporterPLUS will show the progress during creating the document and
start the corresponding application to show the test report.

ReporterPLUS E'

Loading Use-Cazes of Package ATG_TestCaze 14

Cancel

Using the HTML Test Report

The created HTML test report is divided into two sections, the table of Contents on the left
side and the content section on right side. Dependent of the selected item on the left side,
the corresponding section of the report will be shown on the right side.

Note: The HTML report will only be displayed correct in the internet browsers and
versions, which are shown at report startup.

Note: The table of contents will only be shown in a HTML report. To display the table
of contents Java must be installed. In case these requirements are not fulfilled,
please select another export file format like Microsoft Word.

145

o dRBI= STCAnEAc Test Report of Model CppCashRegister
] Te port of Mo g
El B Tcon_CashRegister
(1 Systermn Under Test (SUIT)
(] Test Component Instances
(1 Test Context Diagrams

{Report created at 7/17/2007 at 16:41:04)

El [TestCases Project CppCashRegister.rpy
B TestCaseAD e 0 Direct CiWProgrammeyTelelogichRhapsody 7.1
& TestCase Code_te 0 IFBCLOTY |\ samples\CppSamples\TestConductor\CppCashRegister
= Test Case 30_te_0 Language |C++

s Sanancisb. e 1 This is the CashRegister exercise model for the
Test Case atg_tc_002 Rhapsody TestConductor and ATG tutorial, It is
Test Case atg_tc_003 a8 based on the model from M.\W.Richardson and shows
Test Case atg_tc_004 Description | o main aspects of the Testing Profile
Test Case atg_tc_006 implementation firstly delivered with
Test Case atg_tc_007 Rhapsody TestConductor 2.0,

Test Case atg_tc_008
Test Case atg_tc_008
Test Case atg_tc_010
Test Case atg_tc_013

Test Case aty_tc_014 This document contains the test contexts
Test Case atg_tc_015 " - - .
Test Case atg_tc_016 TCon_CashRegister |in TPkg_CashRegister:: TCon_CashReqgister

Test Case atg_tc_017
Test Casetestease_3

R EEEEERE
OO0 OOO0ODOODODIODIDIOID o

The first page gives an overview about the loaded model and the contained text contexts.
This page is reachable from the highest entry of the table of contents.

Conceptual this report lists all test contexts of the specified test package(s) during
creation. For each test context you will find information about

* the system under test

* the test component instances

* the test context diagrams

* the test cases and their execution status

Each test context and the sub-items are reachable by clicking on the corresponding item in
the table of content. Click on the plus to extend the tree structure.

146

Using the Test Requirement Coverage Report

Table of Contents A” Requn’ements

| Requirerment Coverage
Al Reguire =3
| All Test Cases Name Specification

Covered by Test
Case

Check that each preset can be set to
the minimum and maximum frequency for
each waveband, Check that these
presets are remembered even after the
radio has been switched off and then
back on.

FCwWhiteBox_002

CD_WhiteBox_002 (Il Failed)

Check that if the user starts to setup a
preset that if they don't complete the

setup then after 8 seconds the setup is nat covered

CO_WhiteBox_003

cancelled.
Check that the display indicates the
CD_WhiteBox_004 correct frequency, waveband and also | not covered
the "M" symbal,
Radio
: {Jl not
REQOO1 A radio needs to be designed. executed)
The radio should be able to tune to four
REQOOZ2 different Wavebands:, L\, MW, SW 2 | not covered
4 o FM.
Table of Contents All Test Cases
] Requirement Coverage
1 AllRequi It
equirements p—
Name Description Test Objective Execution
Result

Check that the radio
cannot be tuned to a Requirement_CD_WhiteBox_001 . e
frequency outside of the | (Reguirement)
limits for LW wawveband.
Check that the radio

cannot be tuned to a Requirement_CD_WhiteBox_001 ' Failed
frequency outside of the | {Requirement)
limits for MW wawveband.

Check that the radio
cannot be tuned to a Requirement_CD_WhiteBox_001
frequency outside of the | (Requirement)

lirnits for SW wawveband.
Check that the radio
cannot be tuned to a Requirement_CD_WhiteBox_001
frequency outside of the | (Requirement)

limits for FM waveband.

CDWhiteBox_001a

CODWhiteBox_001b

CDWhiteBox_001c B Fasced

COWhiteBox_001d B Fassed

Check that each preset
can be set to the minimum
and maximum frequency
for each waveband, Check
FCWhiteBox_002 | that these presets are
remembered even after
the radio has been
switched off and then

4 ﬂ back on.

cD_WhiteBox_002)
{Requirement’ M Failed

Execute the test requirement coverage template (TestRequirementCoverage.tpl)to
get a statement about the relation between a requirement and the corresponding test cases,
which cover a requirement in the model. The testing profile defines the stereotype
<<TestObjective>> which shall be used to setup a relation between a test case and a
requirement, which it covers. In general a test objective is a stereotyped dependency,
which can link on every element in the model.

147

=59 TestContexts
-4 TCan_Radia
+-L Associskion Ends
+- | Operations
+-hg Test Cankext Diagrams
—-#, TestCases
—-®. CDWhiteBox_001ai)
- H’ TestObjectives
Id Requirernent_CD_WhiteEox_001
+- ¢ TestResulks
- % CDWhiteBos_00LB()
- H’ TestObjectives
Id Requirernent_CD_WhiteEox_001

This requirement coverage report focus especially on the dependency between a
requirement and a test case. The test requirement coverage report gives another view on
the model. At a glance the user is able to verify, that e.g. the requirement
“Requirement CD WhiteBox 001”is covered by the test cases CDWhiteBox 001la,
CDWhiteBox 001b, CDWhiteBox 00lc and CDWhiteBox 001d, where
CDWhiteBox_ 001b is currently FATILED and in result the requirement
“Requirement CD WhiteBox 001” is not fulfilled.

=

When the Radio is switched on, it should

Table of Contents

(I Reguirement Coverage REQOLE tune to the previous Waveband and not covered
] ~l Requirements Frequency.

] All Test Cases CDWhiteBox_001a

(M Passed)
CDwhiteBox_001b

Check that the radio cannot be tuned to (M Failed)

Requirement_CD_WhiteBox_001 :af;iq:;:?éaonu;mde of the limits for CDWhiteBox_001c

: (M Passed)
CDWhiteBox_001d

(I Passed)

. . SDywhiteBox_001
SD_WhiteBox_001 Check that the radio can be switched (Ml Pas=ed)
on and off,

Check that when the radio is switched
on, that it remembers the waveband
and frequency that had previously been
selected.

SDWhiteBox_002

SD_WhiteBox_002 (Il 2bortedy

SDWhiteBox_003
(Il not
executed)

Check that the Radio can be
SD_\WhiteBox_003 automatically tuned forwards and

i ﬂ backwards.

In opposite to the view “All Requirements”, the report also shows a table with “All Test
Cases” of the model. The “All Test Cases” view is assistant to check, whether a test case
has a test objective.

Some items in HTML report e.g. requirements, test cases test results etc. are linked, so the
user can easily browse to more detailed information pages.

148

Requirement Requirement_CD_WhiteBox_001

Description no description
e Check that the radio cannot be tuned to a frequency outside of the limits
Specification
for each waveband.
Package Radio_TestPlan
Full Path RequirementsPkg: :Radio_TestPlan.Requirement_CD_wWhiteBox_001
Covered by COWhiteBox_001a (88 Passed), CDWhiteBox_001b (88 Failed),
Test Case COWhiteBox_001c (B8 Passed), COWhiteBox_001d (8 Passed),
. . Anchored COWhiteBox_001a (Operation), COWhiteBox_001b {Operation),
Requirement_CD_‘WhiteBox_001 Elements COWhiteBox_001c (Operation), COWhiteBox_001d {Operation),

Customizing the Test Report

The test report template is customizable to fit specific users requirements. Follow the
Rhapsody ReporterPLUS documentation how to adapt it to your needs.

Generating Test Reports with Rational Publishing
Engine

Rational Publishing Engine (RPE) is a tool that can be used to automate the generation of
documents. The user is able to customize the content and style of a RPE report by
specifying a template. Rhapsody TestConductor currently delivers a test requirement
coverage report template (TestRequirementCoverage.dta), which will be installed in
the folder “Share\RPE\Templates\TestConductor” in your Rhapsody installation.

Creating the Test Report

* Choose from the menu Tools > Rational Publishing Engine > Generate report...

Window Help

|| Diagrams r JJE\ o g & §

Erowser

2% | TPka_Contraller_C
&nimated Sequence Diagram l £ g_Lontroller_L:

1 Animated TestScenario
i Animated Stakechart
Animated Activity Diagram

Iain Diagrarn

Check Model

Spel Check,
ReporterPLUS

Report on model

Rational Publishing Engine

* Select the RPE template which should be used for report generation. The template
“TestRequirementCoverage.dta” must be selected to create a requirement
coverage report.

149

iR 1BM Rational Rhapsody Report Generator

Browse to a Template

Select a Template file and click, "Mext"

Template: Templates| TestConductor! TestRequirementCoverage. . deal | [Bruwse...]

* Specify which types of output files should be created and where they should be
saved.

iR 1BM Rational Rhapsody Report Generator

Configure the Dutput
Select aukput bypes needed and optionally change skvlesheets and
oukput paths
Cutpuk Type | Oukput File Skvlesheet File | Macro
ord
Herml Mot Applicable
FDF Mot applicable Mot Applicable
¥=lFa Mot Applicable Mok Applicable
< E

< Back][Mext =] [Einish l [Cancel

* Then RPE automatically creates the selected reports.

Test Requirement Coverage Report

A test requirement coverage report gives an overview about the requirements and test
cases specified in the model and how the requirements are covered by test cases.

The testing profile defines the stereotype <<TestObjective>> which shall be used to
setup a relation between a test case and a requirement.

All requirements specified in the model are listed and it is shown which requirement is
covered by which test case. Detailed information are also available for each requirement.

150

All Requirements

MName

Mission

MNotation

OperationErrors

Civision by zero

Specification

<<MNo Model Dataz>

<<MNo Madel Data» >

<<MNo Model Dataz>

<<No Model Data»>

Covered By Test Case

TPkq TheCalc::TCon TheCalc Architecture::TCon TheCalc.SD tc plus

PASSED for TPkg_TheCalc:: TPkg_TheCalc_MIL_Comp::MIL DefaultConfig

IPkg TheCalci:TCon TheCalc Architecture::TCon TheCalc.SD tc minus
PASSED for TPkg_ThetCalc:: TPkg_TheCalc MIL_Comp::MIL_DefaultConfig

TPkg TheCalc::TCon TheCalc Architecture::TCon TheCalc.SD tc _mult div

PASSED for TPkg_TheCalc:: TPkg_TheCalc_MIL_Comp::MIL_DefaultConfig

TPkq TheCalc::TCon TheCalc Architecture::TCon TheCalc.SD tc 2

FAILED for TPkg_TheCalc: : TPkg_TheCalc_MIL_Comp::MIL_DefaultConfig

not covered

TPkg TheCalc::TCon TheCalc Architecture::TCon TheCalc.SD tc 1

PASSED for TPkg_TheCalc:: TPkg_TheCalc_MIL_Comp::MIL_DefaultConfig

Requirement Division by zero

Description
Specification
Package
Full Path

It is an unrecoverable error if operand register 2 is O when operation is 4 (=)

no description

RequirementsPkg
RequirementsPkg: Division by zero

e TPkg TheCalc::TCon TheCalc Architecture::TCon TheCalc.5D tc 1:

Covered by Test Case

Anchored Elements

PASSED for TPkg_TheCalc: : TPkg_TheCalc_MIL_Comp::MIL_DefaultConfig

rno anchored elements

The test cases specified in the model are listed, too. Again detailed information are
available for each test case.

All Test Cases

Name

S0_tc_plus
sh_tc 1
sD_tc 2
S0_tc_minus

S0_tc_mult_div

Description Test Objectives Test Execution Result

no description Mission

no description

no description MNotation

no description Missian

no description Mission

(Requirement)
Civision by zero PASSED for TPkg_TheCalc, TPkg_TheCalc_MIL_Comp: MIL_DefaultConfig
(Requirement)
(Reguirement)
(Requirement)

(Requirement)

PASSED for TPkg_TheCalc: TPkg_TheCalc_MIL_Comp::MIL_DefaultConfig
FAILED for TPkg_TheCalc:: TPkg_TheCalc_MIL_Comp::MIL_DefaultConfig

PASSED for TPkg_TheCalc, TPkg_TheCalc_MIL_Comp: :MIL_DefaultConfig

PASSED for TPkg_TheCalc: TPkg_TheCalc_MIL_Comp: MIL_DefaultConfig

151

SD_tc_plus

Description no description

Test Passed for
Execution TPkg_TheCalc::TPkg_TheCalc_MIL_Cormp::MIL_DefaultConfig
Result

Implementation
itsCSC_SD_tc_plus GEM{evTCStart);

Test Scenario 50TestScenario_0

=SLT=
Tion_TheCal:. ks TCon_TheCakc.its TCon_TheCakc. ks
DurrenyDaiver_of ThoaC sk T hanC e TC_how_ReCusput
_ThesCalc:Duaverey Dz _of_TheC
Crewer of Thedal i akcrfutpatDevics

enyOper andfom], Yalm3]) |

|

| Set_Duplayecaue(z=31)

-
evperandiion?, Yalmil) |
Set_Displyedvauexall) o
eviperstion{cp=1) |
evComplte() :
i
v himRenil) |
|
]|5¢+. Valdip=1} -
| Sal:_Displaryacte e ved 2) -
|
|
|
|
|
|
|
Test Objectives

Mame of Test Objective Anchored Model Element Metaclass
Mission Mission Requirement

Creating Report Templates

How report templates can be created using Rational Publishing Engine Document Studio
is described in the RPE documentation. An XML schema file of the testing profile
(testingprofile.xsd) which can be used for template creation can be found in the
folder “Share\RRE\Schemas” of your Rhapsody installation.

152

Using the TestConductor API

Similar to Rhapsody, TestConductor provides an API that can be used to access
TestConductor functionality from

e VBA Scripts
e Programs using the Rhapsody COM API
e Programs using the Rhapsody Java API

In order to use the TestConductor API the Rhapsody API function
“IRPApplication::runHelper(String)” must be used. In order to apply this function
correctly, one has to provide as an argument a valid TestConductor command.
Additionally, before the “runHelper” function can be executed, an appropriate model
element (e.g. a TestCase) must be selected by using the Rhapsody API. A typical sequence
would look as follows (using VBA):

Set app = GetObject(, "rhapsody.Application")

Set proj = getProject()

Set testcase = proj.findElementsByFullName("TestPackageA.TestContextB.TestCaseC")
‘ highlight the selected element

testcase.highLightElement();

‘ now one can execute a TestConductor command

app.runHelper(“Execute TestCase Sync”)

The sample “CppSamples/TestConductor/TestConductorAPI” shows how to access the
TestConductor API from within VBA scripts and Java programs. Additionally, the sample
“CppSamples/TestConductor/CppTestAutomationSample” shows how to use the API in
order to automate your testing workflows..

Available TestConductor APl Commands

The following TestConductor API commands are available and can be called by using the
“runHelper” Rhapsody API function:

Applicable to TestCase elements:
e “Edit TestCase SDInstances”
o “Update TestCase”
e “Build TestCase”
e “Execute TestCase”

o Performs asynchronous TestCase execution, i.e., the function returns
immediately and the execution of the TestCase is performed in a
separate thread. The API script has to ensure itself (e.g. by waiting a

153

specified amount of time) that the TestCase execution has finished
before additional TestConductor API commands can be executed.

“Execute TestCase Sync”

O

Performs synchronous TestCase execution, i.e., the function returns
only after the execution of the TestCase has finished. This ensures that
subsequent TestConductor API commands are only performed after
the TestCase execution has finished. This is the preferred way of
executing TestCases via the TestConductor API.

Applicable to TestContext elements

“Create SD TestCase”

“Create Flowchart TestCase”

“Create Code TestCase”

“Update TestContext”

“Build TestContext”

“Execute TestContext”

O

Performs asynchronous TestContext execution, i.e., the function
returns immediately and the execution of the TestContext is
performed in a separate thread. The API script has to ensure itself
(e.g. by waiting a specified amount of time) that the TestContext
execution has finished before additional TestConductor API
commands can be executed.

“Execute TestContext Sync”

O

Performs synchronous TestContext execution, i.e., the function
returns only after the execution of the TestContext has finished. This
ensures that subsequent TestConductor API commands are only
performed after the TestContext execution has finished. This is the
preferred way of executing TestContexts via the TestConductor API.

“Execute TestPackage”

“Update TestArchitecture”

Applicable to TestPackage elements

“Create TestContext”

“Update TestPackage”

“Clean TestPackage”

“Build TestPackage”

“Execute TestPackage”

O

Performs asynchronous TestPackage execution, i.e., the function
returns immediately and the execution of the TestPackage is

154

performed in a separate thread. The API script has to ensure itself
(e.g. by waiting a specified amount of time) that the TestPackage
execution has finished before additional TestConductor API
commands can be executed.

o “Execute TestPackage Sync”

o Performs synchronous TestPackage execution, i.e., the function
returns only after the execution of the TestPackage has finished. This
ensures that subsequent TestConductor API commands are only
performed after the TestContext execution has finished. This is the
preferred way of executing TestPackages via the TestConductor API.

Applicable to Class elements

e “Create TestArchitecture”

Defining Callbacks for TestConductor functions

In addition to using the TestConductor API directly, one can also execute automated
scripts after certain TestConductor actions like e.g. creating test architectures. In order to
do this, one can use triggered helpers as provided by Rhapsody. For instance, to specify
that after test architecture creation a certain helper should be activated automatically, one
has to do the following steps:

e Define a helper with the Helper Trigger “After Add Element”. The helper can
be implemented e.g. using a VBA script or by an external program that uses
the Rhapsody API.

155

Itenicontane I A I

Create Testirchitecture P
Clean TeztComponent
Ipdate Testdrchitecture
Ewecute TestContext Sync
Ewecute TestPackage Sync
Load TestResults

Set RTC SilentMode

Rezet ATC Silenttode
tyHelper

[||

Helper parameters

M odule: i kaodulel |
b acro narme: !Shn:an amething |
Applicable To: | L"3 |
Project Tupe: | w |
Helper Trigger; I After Add Element V_.|

Type
() External program (%) WEA macro Shaw in Toalz menu

‘wealk bor completion

L k. J[Apply][Cancel

o Now, when doing “Create TestArchitecture”, after the test architecture has
been created the specified helper is invoked automatically.

Besides “Create TestArchitecture”, helpers with helper trigger “After Add Element” are
also invoked automatically for all other TestConductor functions that create new elements,
like e.g. “Create Code TestCase”.

156

Advanced Test Definition

Specifying Requirements with Sequence Diagrams

Sequence diagrams play a dominant role in the TestConductor test process. They are a key
means for the graphical specification of tests, and enable TestConductor to visualize
design flaws.

Graphical Feature Support

TestConductor supports the standard UML sequence diagram elements, as available in the
Rhapsody sequence diagram editor. However, some of these elements are not yet fully
supported.

TestConductor supports the following graphical features:

* Test component lines, which specify classes with driver operations or stub
operations

» Test context lines, which specify the boundary of the system under test including
their test components

* Environment lines, which specify the boundary of a system under test

* Actor instance lines for reactive actor classes (those containing state charts). These
classes represent external behaviour against the system under test.

* Object instance lines, which specify the communication behaviour inside the
system under test

* Horizontal and slanted message arcs between object instances (including actor
instances), which specify events, triggered operations, operation calls, and their
argument values. Unspecified messages (messages with realization unspecified)
and unrealized message (messages with Stereotype unrealized) are ignored.

* Messages to itself, which specify that the source and the target of events and
operation calls is the same object instance.

* Dataflow messages among object instances.
* Condition marks, which specify synchronization points in a sequence diagram

» Events originating at the environment axis, which specify that external events
trigger the system under test.

* Only assertion based testing mode: Interaction operators “opt”, “alt”, “loop”,

99 ¢

“break”, “consider”, “parallel”

Synchronous and Asynchronous Messages

Rhapsody supports the concepts of synchronous and asynchronous messages. Both of
these concepts can be used when you define and execute tests.

157

BvOfHook)

auDiaiTnneQ

'I—:;—————‘—————————— gy
vDigitDial2d(D giJ[ZAEl Digit1)

ierpligit2 -

JevRelease

_! _,_ _________________ ["

Note the following:

* Only event messages, which are asynchronous, can be interfered by another
message.

* Operation calls are synchronous and do not admit any interference.

TestConductor associates for every event message in a sequence diagram two actions—
sending and receiving. In opposite to event messages TestConductor associates only one
action to operation calls and dataflows. During a test execution with TestConductor, you
can drive a specified sequence diagram and monitor (in the execution dialog) the total
number of actions and those that passed successfully.

Linear and Partial Order

TestConductor can interpret a sequence diagram either in linear order or in partial order
mode. To understand why partial order interpretation of sequence diagrams is sometimes
necessary to specify monitors, consider the following example. Assume that the
companies CompanyA and CompanyB want to set up a conference call. You want to
monitor the situation that both parties are eventually connected to the conference call. The
following sequence diagram specifies that each party dials a conference CallNr ().
Regardless of the order the parties dial and connect, the monitor must be fulfilled
whenever both parties have connected. In the sequence diagram every message CallNr ()
specifies two ordered actions:

* Sending the CallNr () event by a party

* Consumption of the CallNx () event by the telephone corresponding to the
calling party

158

BTC BTC_Telephone IBK IBM_Telephone

| CallNr(}
CallNr{}

If you had only linearly ordered monitor sequence diagrams, you could not express the
required independency of the connection order. Note that there are six possible dialing-
and-connection orders for the parties:

(CompanyA Dial - CompanyB Dial - CompanyA Connect -
CompanyB Connect)

(CompanyA Dial - CompanyB Dial - CompanyB Connect -
CompanyA Connect)

(CompanyA Dial - CompanyA Connect - CompanyB Dial -
CompanyB Connect)

(CompanyB Dial - CompanyA Dial - CompanyB Connect -
CompanyA Connect)

(CompanyB Dial - CompanyA Dial - CompanyA Connect -
CompanyB Connect)

(CompanyB Dial - CompanyB Connect - CompanyA Dial -
CompanyA Connect)

Every sequence diagram interpreted in linear order could specify only one of these
possible connection orders (for example, the linear order of the connections shown in the
sequence diagram considered above is “CompanyA Dial - CompanyB Dial -
CompanyB_Connect - CompanyA Connect”, because the evaluation order is from top
to bottom). Hence, with linear order you must define six different monitor sequence
diagrams. Note that five of these monitors would lead to a failure during testing; only one
would pass in every test execution. If you interpret this sequence diagram in partial order,
it represents all the possible (six) orders. This is due to the fact that you do not enforce any
order between pair wise independent sending and receiving of the CallNr () events.
Sending and receiving of an event on the CompanyB side is independent from the
CompanyaA side.

Test execution with partial order might result in extreme compilation times. TestConductor
has a facility to interrupt the execution when it takes too long.

159

=l
v (&) * h
Marme Status File,/Tteration
"} Regression_Test_Tel... MOT EXECUTED

Freparing TestCaze Execution... Pleaze Wait.
TestCaze containg 50 Instance(z] with partial order or
blackbox mode.

TestCaze Campilation may take a long time.

To abart presz Quit Buttaon, -

By pressing the “Abort” icon in the icon toolbar aborts the compilation and test case
execution.

Note: Partial order set together with the driver and monitor option implies that driving
the input events is independent from monitoring the internal messages. To avoid
the arising nondeterminism, TestConductor first drives inputs and then monitors
internal messages. TestConductor chooses one valid order of messages to be
driven (in particular, this order changes in general when the same sequence
diagram test case is executed repeatedly). Such nondeterminism does not exist
for linear order interpretation, because it is a precise order between all messages
in a sequence diagram. Also note that there is no nondeterminism for monitor
only, because you decide when you inject all inputs, and TestConductor monitors
internal messages as they appear in the running model.

Parameters

One of the most important aspects of reusing sequence diagrams is the possibility to
parameterize them. By using parameters such as “X” and “Y” as object names for
sequence diagram instances, all combinations of objects of the corresponding classes can
be treated within one sequence diagram. You must instantiate these parameters with
different concrete objects of the system.

Parameters are used to specify sequence diagrams, which can be used as test patterns or as
generic sequence diagrams in test definitions. Parameterized sequence diagrams can be
used more than once in the same test configuration, or they can be used in various contexts
in different test configurations. Parameters can be applied for instance names and for
argument lists of events and operations. Instance names in a Rhapsody sequence diagram
must be either concrete names or parameters. For example, if an instance line is labelled
“X1:Telephone”, X1 is a parameterized object instance name of class Telephone that
will be mapped to a concrete object instance name when the sequence diagram is
instantiated as part of a test definition. In other words, x1 can be mapped to PBX[0] -
>itsTelephone [0]. Parameters are useful when you are defining multiple tests with a
similar structure, such as the PBX sample where Telephone 1 can connect to
Telephones 2, 3, and 4. Using parameters, you can specify sets of similar tests by

160

specifying one common sequence diagram for these cases. To manually generate multiple
test cases, simply bind the sequence diagram parameters to various concrete values.

In the following example, the sequence diagram contains the parameters caller,
receiversline, receiver, nrl, and nr2. The first three parameters represent
parameterized instance names, whereas the last two describe attribute values for
parameterized events. Due to the concept of parameters, this sequence diagram can be
used as a test pattern to specify and execute caller-receiver tests for the pairs of
telephones. This is done by instantiating the sequence diagram several times.

E!!TestScenarin: Ringing_Another_Party *) N 2 |EI|£|

EMY | caller:TeIeptheI receivers e:Li...l re...:TeIepthE:I

Eny callerTeleph receiversLine: receiver:Telep

one Line hone

ﬁ | | |

7, eDigitDialed(Digit=nr1) | | |

Z | | |

Z evDigitDialediDigit=nr2) | | |

iy

g | | evRing() |

Z | | 9

“

< | | | =
1| | 3

Defining Parameters

TestConductor supports test definitions based on sequence diagrams, whose instances
either have a concrete or parameterized name. Parameterized name means that it is not a
valid, or concrete, object name as usually used in Rhapsody. You can also use an
anonymous class name that is without a concrete name or parameter. In this case, in
accordance with Rhapsody, the class name is internally expanded to the unique concrete
object instance. During test execution, sequence diagrams are animated in relation to the
default names. Note that parameters have no default values. You can specify parameters
for a sequence diagram by declaring them in the Tag RTC SDParameter which is
available for each test scenario sequence diagram.

To declare parameters for a sequence diagram do the following:

1. Open a Rhapsody sequence diagram in a Rhapsody project.

2. In the names pane, specify the objects names of the classes Telephone and Line.
Give a parameterized name, such as caller:Telephone. Give the concrete names
for another instance depicted in the sequence diagram like PBX [0] -
>itsTelephone[0]: Telephone. You can leave an instance “anonymous” like
Line. Rhapsody considers such a specification as a concrete class instance with the
default name PBX[0]-> itsLine[0]:Line.

161

In the Rhapsody browser, click on the cross beside of the name of the test scenario
sequence diagram to open the tag view.
EIE—"D Testacenarios
' Animated Capture_all_Telephones_0
¥ b Answering_Call
Calling_Busy_Phone
Receive_x

_ o g RTC_SDParameters
r Stub_OffHook,

Stub_Ring
n_calls_
n_talls_¥_when_offhook,

Open the Feature dialog of the corresponding RTC SDParamters tag

Click into the Value field and type the name of the parameter.
Tag : RTC_SDParameters in Ringing_Another_Party N . |

Genaral | Descriptionl

M arme: |F|TE_SDPararneters LI
Applicable to: j

Type: String j EI
Yalus: Inr'l 2 caller receiver receiversLine _I

Note: Make sure that you type the identical names of parameters as specified in the

Note:

current sequence diagram. TestConductor cannot determine misspelling.

in case these properties were not added before. This is why existing models with
sequence diagrams are marked as changed (red icon) along with the sequence
diagrams when projects are loaded for the first time after TestConductor was
installed.

TestConductor adds properties to the sequence diagrams when models are opened,

If a sequence diagram contains two or more parameters, separate their names using
commas, then click OK. The following figure shows how to specify multiple parameters.

162

You can apply parameters to message argument lists to specify more flexible, generic
sequence diagrams as templates in test definitions. Parameterized arguments of messages
are used, for example, when input stimuli correspond to parameterized object names in the
same sequence diagram or in the same test configuration.

To extend the parameter list of a sequence diagram with parameterized arguments, do the
following:

1. Open the sequence diagram in the Rhapsody sequence diagram editor and specify
event or operation arguments as parameters inserting their parameterized names in the
object pane. As an example, in the following figure, values of the Digit argument of
the evDigitDialed event are specified as parameters nrl and nr2

I

EMY callerTelepho receiersLing: receiver: Telep
ne Line hane

7 | | |

Z evDigitDialed Digitnr1) | | |

Z | | |

A e 0

% evDigitDialed{Digitanr2) | | |

“

é i | evRingl) |

“ | | >

2. Using the Rhapsody browser, open the Feature dialog of the corresponding
RTC_SDParamters tag and extend the list of the parameters typing “nr1,nr2” in
addition to the existing parameters in the Value field.

3. Click OK to accept the change of the parameter list.

The specification defined with the generic “Ringing_Another Party” sequence diagram,
says that whenever a calling telephone is taken off the hook and dials an extension, the
receiving telephone rings. Note that the sequence diagram does not specify which
telephone is calling, which one is the receiver, nor the extension dialed.

Parameter Mapping

You can consider Rhapsody sequence diagrams with parameters as “classes of sequence
diagrams”, whereas sequence diagrams with parameters mapped to real objects represent
“instances of sequence diagram classes.” One parameterized sequence diagram can be
used in various contexts: in different test configurations, or in the same test configuration
with different parameter mappings. It catches several requirements similar in structure
(order of messages) and different only in the names of the involved instances.

As an example, the “Ringing_Another Party” sequence diagram can specify that
Telephone 1 calls Telephone 4. To do this, map its parameters to the following
object names in the PBX model:

caller: PBX[0]->itsTelephone[0]
receiversLine: PBX[0]->itsLine[3]
receiver: PBX[0]->itsTelephone[3]
nrl: 1

nr2: 4

The following table lists the extension for each telephone.

163

Telephone Extension
Telephone 1 11
Telephone 2 12
Telephone 3 13
Telephone 4 14

In this example, mapping parameter nr2 to 3 instead of 4 leads to the “concrete”
specification corresponding to “Whenever Telephone 1 dials the extension of Telephone 3,
Telephone 4 rings”. TestConductor will show that this specification cannot be met by the
real behaviour of the model.

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

Using Time Interval for Delay Driving from Environment and
TestComponents

TestConductor provides capabilities to automatically drive messages (events, operations or
triggered operations) with a certain delay. Users can specify that TestConductor should
drive external messages or messages from a TestComponent to the SUT with a certain
time delay. Whenever a message must be driven, users can specify that TestConductor
waits for a certain amount of time (ms, sec, min) in order to delay actual message
generation. This is expressed on the sending instance line (either the system border or a
TestComponent) with the time interval notation of the sequence diagram editor.

Note: TestConductor will regard only time intervals between messages, if driving
messages are defined from the ENV line and the time interval definition is also
specified on the ENV line or if driving messages are defined from a
TestComponent instance line and the time interval definition is specified on the
same TestComponent instance line.

Any Time Interval on a SUT instance line will be ignored.

Time delays will be specified with the time interval notation in sequence diagrams.
TestConductor supports time intervals if they are associated with system border or
TestComponent instance lines. The label of a time interval specifies the time unit (ms,
sec, min)and a time value. Essentially, there are two slightly different Time Interval
annotations with a slightly different execution semantics. The first variant uses the
following syntax:

Syntax: > 5 sec

Here, TestConductor must wait at least 5 seconds before it may drive the next message.
Other time interval formats are “> 500 ms” and “> 5 min”. TestConductor creates a
timer in the tested application which elapes after the amount of time specified in the Time
Interval.

164

The start point of a time interval is always associated with the next message point above
the time interval (on any instance line). The end point of a time interval is always
associated with the next message point below the time interval (again on any instance

line).
PB PB PB 2
g\f ffHook()
T gl
Z R gl
>I;}ﬁen(30nnectm()
> 5 sec : penConnectﬁw()
evOriginateCarl()
evDialTone()) ————o |
e T
7 —
ZZDigitDialed DSt = 1)
e
? T
~

After driving evOffHook () and observing evOriginateCall () TestConductor must
wait 5 seconds before it may drive evDigitDialed (Digit=1) .

TestConductor must monitor all system reactions before evDigitDialed (Digit=1),
including evDialTone ().

The second variant of Time Intervals are those which uses the following syntax for time
annotations:

Syntax: >> 5 sec

When using this syntax, in contrast to the “> 5 sec” case TestConductor does not create an
own application timer when starting the time interval. Instead TestConductor will use the
time of the tested application. As a result, TestConductor will only proceed if the tested
application time increases at least the specified amount of time. In contrast to the “> 5 sec”
syntax TestConductor may proceed later than the specified amount of time, since the
tested application time might increase to a larger amount of time than the specified time
interval.

TestConductor also allows that time intervals overlap if several messages to be driven are
constrained via time intervals. This means, TestConductor will manage several timers for
the driven messages at the same time, no matter if they are specified on the same instance
line or on different instance lines. For every time interval there always exists a unique
predecessor and successor message to be driven in the sequence diagram.

Activation Conditions

Activation conditions are used to specify the point in time during model execution when
sequence diagram instances become activated. You can use activation conditions to model
a predecessor order between several sequence diagram instances in a test definition.
Activation conditions can specify a starting point of sequence diagram instance
simulation, such as event sending or event receiving, which in turn can be a result of the
behavior defined by another sequence diagram. TestConductor supports conditional
expressions for events and conditions in the following form:

ObjectName->CondName (Parameters)

165

In this syntax:

* ObjectName is a parameterized or concrete name of a class instance or an ENV
(environment variable), which can be represented by the system border.

* CondName is a particular kind of event, state, or method action.

* Parameters is a state of a state chart, or the name of an event or method, and
the receiver of this event or method, depending on the CondName.

The exact syntax is described under Syntax for Activation Conditions / Condition Marks
(see page 255) in the appendix.

Note: Rhapsody does not perform any static syntax checks on these conditions.

You can associate exactly one activation condition with every sequence diagram. The
trivial activation conditions are TRUE and FALSE. Every sequence diagram instance used
in a test inherits the activation condition specified in the property dialog of the sequence
diagram.

Defining an Activation Condition

Activation conditions are stored as additional tag RTC ActivationCondition in the
corresponding test scenario sequence diagram. Activation conditions can be defined with
respect to the condition language definition, as follows:

1. In the Rhapsody browser, click on the cross beside of the name of the test scenario
sequence diagram to open the tag view.
EIE-'lD TestScenarios

Animated Capture_all_Telephones_0
-y, Answering_Call

Calling_Busy_Phone

Receive_x

L g RTC_SDParameters

g Stub_OFfHaok

- Stub_Ring

¥ _calls_y

%_calls_¥_when_offhook,

2. Open the Feature dialog of the corresponding RTC ActivationCondition tag
3. Click into the Value field and type the condition. You can specify one activation
condition.

166

Test Scenario : SDTestScenario_0 in SD_with_alt

| General | Description | Felations | Tags | Properties|

= TestBehavior
= TestScenario
RTC_ActivationConditon | TRUE
: RTF:_SDF'ara metgrs .

5. Click OK.
Note: To make activation conditions visible in the sequence diagram, you can draw
notes with their descriptions.

Condition Marks

TestConductor enables you to specify conditions for condition marks on instance lines
with the same syntax as activation conditions. Condition marks in sequence diagrams can
play the following two roles:

* Synchronize several sequence diagram instances executed concurrently.
* Specify a stubbing behaviour which can appear during execution.

As an example, you can add the following condition mark for the instance of the class
Line in the “Ringing_Another Party" sequence diagram:

receiversLine->IsIn (ROOT.InService)

Sequence Diagram: Ringing Another_Paity M= E3

caller: receivers receiver
Telephone Line:Line Telephone

|»

evOffHook()

evDigitDialed(Digit=nr1)

evDigitDialed{Digit=nr2)

o

recei er@ n{ROOF Inervic

evRing()

NANANNNRANANNNN

=
< [+]

Testing the requirements specified by this sequence diagram, TestConductor will drive the
first three events. After that, it will proceed only if the condition of the condition mark has
the value TRUE. Otherwise, some other activities in the system must be performed to
change the value of the condition. You can specify these activities using other sequence

167

diagrams driven by TestConductor. They can also be driven manually, if it has not been yet
implemented as a part of the system. Changing the value of the specified condition to
TRUE will trigger TestConductor to continue monitoring and driving this sequence
diagram.

In case there are two or more condition marks defined in a row, TestConductor will check
the first only. TestConductor will evaluate each of the following condition marks with a
new system activity, if the previous condition mark was TRUE. This is the default
TestConductor behaviour.

TestConductor can be configured to check the reached condition and following conditions
without system activity, till one condition mark evaluates to FALSE. To change the default
TestConductor behaviour change the property

TestConductor: :TestCase: :MultipleConditionCheck of the test case from
FALSE to TRUE.

Test Case : atg_tc_002 in TCon_CashRegister

General] Dezcrption | Implementation | Argumentz | Relations | Tz

Wiew Al -

=I| TestConductor

= TestCase
ATGTestCase O
CalCperationsCnlywhenCallstackEmply D
CreateSDForFailedSDInstance D
ExecuteTestwithTracer D
ExecutionldleTimeouk 0

rultiple ConditionCheck:
ResetappBeforeStartTest [}

Note: TestConductor will ignore condition marks during test execution when the syntax
of the condition mark is not valid.

Preconditions (for SysML/Harmony)
For SysML/HARMONY models, i.e for SysML models that contain the HARMONY
profile, TestConductor provides a special kind of condition, so-called preconditions. With
preconditions, in SysML/HARMONY models one can set attributes of SUTs to specifed
values. This is useful whenever the behavior of the SUT depends on values of local
attributes. In order to define a precondition in a test scenario, add a condition on the life
line of the SUT instance that contains the attribute, write “<precond>" into the first line
of the condition's text, and specify the value the attribute should have in the next line:

168

3T
TCon_Aitsas TCon_AitsTC
_for_itsB_of_
ATC for_itsB

|

<precond= |
i1t=12 |
51 ="Feater" |

|

fli=1) |
|

In the example depicted above, a precondition is specified that defines value “12” for the
attribute “i1”” and value “Peter” for attribute “s1” of block A. When executing the test
case, and TestConductor reaches the precondition, it sets the specified values for the
attributes. When the test case continues, now the behavior of the SUT reflects the new
values for the attributes. Currently, the usage of preconditions is restricted to
SysML/HARMONY models. If multiple attributes should be set by a precondition, the
attribute value specification must be separated by newlines in the condition mark.

Use Cases of Activation Conditions
This section describes some examples that use activation conditions. The main three
purposes of activation conditions are as follows:
* To specify the starting point of sequence diagram simulation.

* To specify that one sequence diagram can be activated only when another sequence
diagram has already been activated or fully traversed (during simulation).

Specifying the Starting Point of Simulation

Activation conditions specify a point in time when the corresponding sequence diagrams
must be activated. Consider the parameterized “Answering_Call” sequence diagram
shown in the following figure:

169

= Sequence Diagram: Answering_Call M=l E3 I

receiver receivers
Telephane Line:Line
i B
Activation Condition
receiversLine->EventSent(receiver, evRing())AND
receiver-»|sin(ROOT| Ready. dle)
eviOffHook()

¥

evinswearCall()

L 4

FSNANNNNANNNNNNN

F s

This sequence diagram can be used to test, whether any telephone can properly answer a
call. This property will be checked starting in the system state specified in its activation
condition:

* When the object defined as receiversLine has sent the event evRing () to
the corresponding Telephone receiver.

* When the object defined as receiver stays in its basic state ITdle.

Specifying Ordered Predecessors

Through activation conditions, you can define a predecessing order between instances of
different sequence diagrams checked during the same test execution.

Example 1: Exact Predecessing
Consider two sequence diagrams that will be stimulated one after another:

* “Ringing_Another Party” (shown on page 161)
* “Receive_X”, shown in the following figure:

170

= Sequence Diagram: Receive_X M=] g3

receiver. receiversLine:Line
Telephone
7 .
/ Activation Conditipn: |
% receiversLine->EventSent(receiver, evRing())
/ ffHook

\\F

evAnswerCall])

\\F

evTalk()

8 \F

[~14]

4

Note that the exact order can be set only between “concrete” sequence diagram instances,
rather than parameterized sequence diagrams. Consider the following parameter mapping
for the “Receive X" sequence diagram:

receiver: PBX[0]->itsTelephone[2]
receiversLine: PBX[0]->itsLine[2]

The activation condition of this sequence diagram specifies the starting point when Line
3 has sent the evRing event to its Telephone 3. This condition can become TRUE
when the corresponding instance of the “Ringing_Another Party” sequence diagram (with
the similar parameter mapping) has been fully traversed.

Although the sequence diagrams “Ringing Another Party” and “Receive X" have similar
parameter names—receiver and receiversLine—they can be mapped to different
values. In such a case, two sequence diagram instances will be unordered. Therefore,
parameter names in sequence diagrams can be considered as local variables with values in
the scope of the corresponding sequence diagrams.

Example 2: Interleaving the Execution of Two Sequence Diagrams

The following two sequence diagrams are activated during a test execution one after
another:

The “X calls Y” sequence diagram, shown in the following figure:

171

Sequence Diagram: X_calls Y M [=] E3 I

caller: callers
Telephone Line:Line

|

-,
,,Au;ﬂualn:-r’: Caondition
NOT (callersLine-=EventRecevedicaller, evRing())
/ evOffHook)

/|gHDiaIed(DigiFreceiwersDigiﬂ)

»

evDialTone()

3

/ef\{ﬂigilDialed(Digit:receiwersDigiﬂ

evReleasel

NN\

™

=14]

This can be used to test whether any telephone can start and finish a communication.
Moreover, this property will be checked only starting from the specified state of the
system—when the object defined as callersLine has not received the event evRing
from the corresponding telephone caller.

An instance of the “Receive X sequence diagram, described on before can be activated
after the corresponding instance of the “X calls_Y” sequence diagram has been partially
traversed. To obtain this order between sequence diagram instances, the mapping for the
parameters receiversDigitl and receiversDigit2 from the “X calls Y”
sequence diagram must correspond to the extension number of the Line name mapped to
the parameter receiversLine from the “Receive X" sequence diagram.

Note that the predecessing order is defined implicitly. During test execution, containing
instances of these two sequence diagrams, Test Conductor first activates an instance of
“X calls Y”, drive the events evOf fHook, evDigitDialed, and monitor the event
evDialTone. After driving the event evDigitDialed (Digit= receiversDigit2),
TestConductor activates the corresponding instance of the “Receive X sequence
diagram. It monitors the event evRelease only after the instance of the “Receive X”
sequence diagram has been fully traversed. The exact order of the sequence diagram
instance execution is derived from the system behaviour, but is also bounded by the
activation condition.

Specifying Return Values and Output Values

Users can specify expected return values and output values for operation calls. To specify
a return value for an operation, open features dialog of an operation in a sequence
diagram. Specify the expected return value in the Return Value field.

172

Message | op_int

Gerzral I Properties |

Marme: ||:||,1_i|'|| LI

Sterentype: | j
Merzage Type: |F"rirnit'n.rc Op=ration j
Sequence: |2

Agaments [a=[3.4]b=2,c = In3;0ut3

Fetunm Walus: |.-1

Fizalizalion . |ﬁ '"“"-—-El Features...
= Serder A

S

™ Beceiver A ™ Return Value 4

Cezciption:

Locale | 0K | Apply: ||

Consider operation 4 =op_int(a = [3..4], b = 2, ¢ = In:9;0ut:3) inthe
following sequence diagram. It returns integer values. Assume we specify integer value 4
as the return value.

= sequence Diagram: =d_A in Default
A
|

/W‘ 8] -
M=op intfz=[3.4] b=2 c=In3;0ut3d
N

-

o

A A

TestConductor will monitor the actual values as specified in the dialog when an operation
call returns and will check if the actual return value conforms to the specified value or not.

Note:

Using Macro OM RETURN () : TestConductor is using Rhapsody’s animation
capabilities to perform test execution. If an operation returns a value then this
value is by default not animated in Rhapsody. In order to get animation
information about returning operations it is mandatory to use a special Rhapsody
macro OM_RETURN () instead of statement return() for the purpose of test
execution. The macro is pre-defined in “\Share\LangCpp\aom\aommacro.h”.
In the above example suppose that operation body of op _int (int a, int b,
int c) simply contains one statement ,,return 4;“. This must be replaced by
OM RETURN (4) ; to be able to check such return values with TestConductor.
Since this special macro is only needed for testing purposed it is already
embedded into #ifdef-statements. The #1ifdef statement guarantees that the

173

macro is only used for testing purposes, while the standard return-statement is
used when generating non-animated code.

Note: Using Macro OM RETURN VOID: If an operation returns with a void value, then
TestConductor can check that the return indeed happens when using
OM RETURN VOID.

Note: Using Macro OMREPLY(): Triggered operations returning values is realized

using reply(). TestConductor can check that the return indeed happens when using
OMREPLY () .

Note: output parameters of type uchar and long double are not supported.

Note: range specification for return values (e.g. " [1..4]") are not supported.

If an actual return value does not conform to a specified value, then a red message is
drawn. The message is labelled with

"<Specified operation and its parameter> Operation Call returned -
Return value does not match. Expected values are: <Expected

operation and its parameter list>".
For example:

“4=op_int (a=1,b=2,c=3) Operation Call returned - Return value does
not match. Expected values are: 5=op_int (a=1,b=2,c=3)".

Note: If we have pointer types or structures as output and in/out parameter types then
serialization functions must be added to the macro in order to be able to test the
value with TestConductor.

Note: If we have pointer types or structures as return types then serialization functions
must be added to the return macro in order to be able to test the value with
TestConductor

Specification of the Output and in/out Values

Suppose we consider an operation m (int pl, int p2, int p3, int p4), where pl
and p2 are input parameters and p3 is an output parameter, and p4 is an in/out parameter.
In a sequence diagram users can specify the expected input parameter values and the
expected output and in/out parameter values. Output and in/out Test Execution parameters
are realized with call-by-reference. For instance, a sequence diagram message "m (pl= 3,
p2 =5, p3 = 7, p4 = 9)"specifies that operation m () is called in the model with
input values p1=3 and p2=5, and with references to p3 and p4, i.e. m(3, 5, &p3, &p4).
Note that &p4 is an in/out parameter and hence is used as an input in the operation m (),
too. Here, sp4 provides the value '9' for the call. The call returns with value p3=7 and
p4=".

The in/out parameter is specified in a sequence diagram with both input and output
parameters. The format of specifying an in/out parameter is

<parameter> = In:<in value>;Out:<out value>

174

Message "m(pl = 3, p2 = 5, p3 = 7, p4 =In:9;0ut:12)" specifies that m() 1is
called with "Input pl1=3”, "Input p2=5”, "in/out p4=9”.Message m () returns
with "Output p3=7, in/out p4=12". Both values for in/out parameter p4, the input
part and the output part are specified.

Output value checking can not be done for operations which originate from the
environment line and are generated by TestConductor. Checking of output values is
supported for all operations that originate from TestComponents, and for all operations
that do not start at the environment line and whose called operation uses OM_RETURN to
return values to the caller.

Users can record animated sequence diagrams. The animated sequence diagrams trace the
parameter values when operations are called, but they do not show the values of output
and in/out parameters when operations return. Hence, animated sequence diagrams can not
be used to check values of output parameters and in/out parameters. Users have to modify
animated sequence diagrams in order to extend it with relevant output information which
is not provided by Rhapsody's sequence diagram animation.

Suppose we consider an operation m (int pl, int p2, int p3, int p4), where pl
and p2 are input parameters and p3 is an output parameter, and p4 is an in/out parameter.
An animated sequence diagram might show "m(p1 = 3, p2 = 5, p3 = *, p4 =
9)". In order to check output parameter p3 and the output value of p4 when m () returns
users must add the required information. Example: "m(p1 = 3, p2 = 5, p3 = 7, p4
= In:9;0ut:12)".

Note: Out or in/out values are only taken into account by TestConductor if also a return
value is given in the message specification (value or “don’t care”-star). That must
also be done for operations that do not have a specified return type (void
operations). Hence, the In:..;Out:... specification should only be used if a return
value has been defined, too. Otherwise the test execution will fail.

Note: Out values for some specific out arguments are currently not usable if the
corresponding setting of the property CPP_CG::Type::Out specifies a pointer-type
instead of a reference-type.

Note: During execution parameter values containing quotes will consistently be
stripped, e.g. the expression “OK” will be converted to OK and “”OK”” will be
converted to “OK”.

Ignoring Unrealized Messages

Messages with stereotype unrealized are filtered out and ignored in the test execution.

175

Genzal | P[D|:el‘tiBS|

Marme: |ch|fFH ook, _LI

Stereotype: [unredized x|

Maszags Type: | Eveni

Sequerce: [1

Aguments: |
Fetur Walus: |
Realizaior . [# =l Features...i S
e e T
= Serder SYSTEM_EORDER Stereotype "Unrealized

2 Receiver PE=[0]+ 15T edephonel0] Teleprre

Dresciiption:

—

Locate | 0K | Ay ||

Open the Features dialog of the message then specify Stereotype as Unrealized. When
you are executing the test, we get a user warning that the message is ignored in the test
execution.

Reference Sequence Diagram

Interaction occurrences and their corresponding reference sequence diagrams are specified
within Rhapsody. Defining tests with TestConductor is not affected by interaction
occurrences, since interaction occurrences are features inside sequence diagrams, while
tests are defined on the basis of sequence diagrams listed in the Rhapsody browser. If
sequence diagrams used in a TestConductor test contain interaction occurrences, then this
is not relevant for the test definition but it clearly has impact on the test execution.

TestConductor will substitute interaction occurrences with the scenarios specified in the
corresponding reference sequence diagrams for test execution. For TestConductor, it is
logically the same if users specify a scenario within one sequence diagram or if the
scenario is specified with interaction occurrences and reference sequence diagrams.
Whenever an interaction occurrence is reached, then the scenario as specified in the
reference sequence diagram is tested. Test control starts with the main sequence diagram,
and when a reference sequence diagram is reached, the control goes into a reference
sequence diagram, and as the execution of the reference sequence diagram is completed,
the control returns back into the main sequence diagram.

Consider the following main sequence diagram, “SD_A”, which has a reference to the
sequence diagram, “SD_B”.

176

Sequence Diagram: 5D_A =

N B 0] = itsLine[0]: FEXO)-> FERX0)-> FEXDO)-> FEXND)->
itsTelephone|0]: Line itsCallRouter itsConnection[0]: itsLine[1]:Line itsTelephone[1]:
//evDrFHooko :l
ref EURII’!QO
sD_B Ty

////&;:gitbimd(o.gi = 1)

wvlTgitlialed(Digit= 2)
%‘“‘“-- i
7/ RH evhigitDialediDigit = 1)
7 s
? e_\fElgitDia{e_q\E‘[i{.git £ 2) |
/ ~— ~y
/ S myDigitDialed{Digit = 1)
;, Ny T
? evDigitDialeEEﬁ'i‘g‘ﬁba;____
7

. _““‘"-h-___q_k -
4| 7

This interaction occurrence refers to a sequence diagram with name “SD_B”, as seen
below.

PEXO]> FBX[0}=itsLine[0]: FPBAO]= FPEXAD]>
itsTelephone(d]: Line it=C allRouter: itsConnection[d]:

ewvOriginataCall()
——_"‘———._

T

DpenConnection)

DpenConnection))

evOriginateCall]
ewDialTonen) ———

—

e

In the sample sequence diagrams above testing sequence diagram “SD_A” with reference
sequence diagram “SD _B” leads to the same result as if the interaction occurrence would
have been replaced with the scenario in “SD_B”.

The scenario which is going to be tested is:

—EvOffHook (SD_A)
—EvOriginateCall (SD_B)
— OpenConnection (SD_B)
— OpenConnection (SD_B)
—EvOriginateCall (SD_B)

177

—EvDialTone (SD_B)

—EVRing (SD_A)
—EvDigitDialed (SD_A)
—EvDigitDialed (SD_A)
—EvDigitDialed (SD_A)

Note: Interaction occurrences are drawn on lifelines. Those lifelines have to be
contained in the reference sequence diagram.

TestConductor does not care if:

» reference sequence diagram does not contain the same life lines as surrounded by
the interaction occurrence

* reference sequence diagram contains fewer life lines
» reference sequence diagram contains more life lines
* reference sequence diagram contains other life lines

TestConductor just considers the provided life lines and the specified messages as relevant
test scenario and expects exactly those messages when the SUT is executed. For instance,
if the above shown sequence diagram “SD_B” does not contain the life line to the right
hand side, then message evOriginateCall going to this life line is not part of the test.

Show As SD draws one new sequence diagram with all the messages which have been
monitored (green colour) or which are supposed to be monitored (b/ue colour), and also
failed messages (red colour). If a test contains a sequence diagram with one or more
interaction occurrences, then TestConductor draws still only one new sequence diagram
which shows all the relevant messages of the main sequence diagram and also the
messages from the entire referenced sequence diagram.

I case a TestConductor test is executed in linear order a situation which must be taken care
of is, when there is an additional message on the same level as of the reference sequence
diagram. Consider sequence diagram “SD_A” with the interaction occurrence. To the right
hand side of the interaction occurrence there is an additional message evRing, which is
independent from the interaction occurrence. In partial order execution this will be
considered as parallel. In linear order execution, TestConductor must determine a total
order on all messages. In sequence diagrams without interaction occurrences, this order is
determined graphically from top to bottom in a sequence diagram. In the case above, the
graphical order between messages in “SD_B” and between evRing is not specified.
Hence, TestConductor can not establish a total order based on the graphical information.
In this situation, TestConductor follows the following rules:

1. TestConductor considers all messages from top to bottom in total order unless the
upper boundary (graphically) of an interaction occurrence is reached.

2. Then all messages in the reference sequence diagrams are considered in total order

3. Then the messages to the right hand and left hand side of an interaction occurrence are
considered in total order (if those messages do exist).

4. Ifreference sequence diagrams contain new interaction occurrences then the same
rules apply.

178

If several interaction occurrences appear in one sequence diagram then the same rules
apply, i.e. there is a total order on interaction occurrences which is derived from the
graphical order.

If an interaction occurrence is not yet realized by a reference sequence diagram, then this
interaction occurrence is ignored for actual test execution.

If reference sequence diagrams are used to specify lifeline decomposition, then this is also
ignored by TestConductor for test execution.

Life Line and Part Decomposition
Life Line Decomposition Support for Testing

Life line decomposition and their corresponding reference sequence diagrams are
specified in Rhapsody. For instance, consider sequence diagram “MainSD” (Figure 1)
which references “RefSD” (Figure 2).

The system border life line specifies the environment of the sequence diagram. Here, we
have four messages from the system border going to a logical object Te10. Te10 has not
been realized to a concrete class or object in the model. It is just a logical name for an
arbitrary telephone (<unspecified>).Itis a decomposed life line. We set the
decomposed life line to “RefSD” as shown in the diagram. Messages evOf fHook,
evDigitDialed and evOnHook () are sent to TelO (the messages are also
<unspecified>). The MappingPolicy property of its life line is set to
ObjectAndDerivedFromRefSD.

179

Teld
ref RefShr

R
:
:
&

wDigitDialediTigit = 1)
d4hialed(Digit = 21

/

ewRing()

ewlIfH ook

|

CnHaok]

 RYI—

/

T A N N A oy

=l ClassifierRole

ewflerting

r - —

ewdnznerCall

~=10] x|
FBXM]->
t=Telephone[1]]

=

FBX0]->
itsLine[1]:Line

rwRing(

ewdlertingl

ewdnsnerzalll

=
=

MappingPalicy

<

ObjactnndDerivadFrnrrRaFSD_-:D

Figure I . MainSD

In the “RefSD”, we can see that the messages that come from the system border of this
“RefSD” do match with the messages in the “MainSD” (evOffHook (),
evDigitDialed (), evOnHook()).In the “MainSD”, these messages go from the
system border to the Te10 life line. Te10 is internally realized by the concrete objects

PBX[0]->itsTelephone[0],

PBX[0]->itsLine[0] and PBX[0]-

>itsConnection[0] which also exchange some internal messages.

180

FBx[O]-= FBX[D]-=itsLine[0]: PBRX0]-=
itsTelephone[0]: Line itsConnection[0]:

[|
e IffH o ok’ "™

E evOriginatecallg

OpenConnectiond

/_,.f

evOriginateCalll

/ eeriaITuneOhx\'" \
“
wDigithialed(Digit= 11
/_éu.‘rqq@‘ialed([)igi =2
\ evlrigithialediDigit= 1)
g\\\\
L evDigitDW: 7

evbigitDialediDigit

\ a LQA

.
AN

7 N

1

2)

/iilfhnHool(j
L Ty
evFeleasel)
/-r h_\—‘__‘—‘___‘—_ﬁcI‘:\;chc-nn.cn:iti‘:-n(:)
/ eviloze(Source = 1)
[T
DizconnechSource = 1) —
/ 3 LI

Figure 2 : RefSD

We consider only the “MainSD” while defining the test in TestConductor. For actual test
execution, TestConductor will execute the “MainSD” and check if the messages sent
to/from Te10 in the “MainSD” are received/sent by any of the instances in the “RefSD”.
TestConductor knows only senders/receivers of the “RefSD”, i.e., TestConductor knows
only the instances in the “RefSD” but TestConductor does not know about the internal
messages between the instances in the “RefSD”. When message are sent to/from Tel0 in
the “MainSD”, Testconductor only checks if these messages are received/sent by the
instances present in the “RefSD”.

In the sample, testing “MainSD” with reference sequence diagram “RefSD” leads to the
following order of messages that will be checked by TestConductor

* System border sends evOf fHook () to Tel0 in the MainSD
* evOffHook () isreceived by one of the instances in the RefSD

181

* System border sends evDigitDialed (Digit = 1) to TelO inthe MainSD

* evDigitDialed(Digit = 1) isreceived by one of the instances in the
RefSD

* System border sends evDigitDialed (Digit = 2) to TelO in the MainSD

* evDigitDialed(Digit = 2) isreceived by one of the instances in the
RefSD

* evRing () is sent by one of the instances in the RefSD

* evRing () isreceived by PBX[0]->itsLine[1] in MainSD

* Messages evRing () and evAlerting () occur in the MainSD

* evAlerting() sentby PBX[0]->itsline[1] to TelO in MainSD
* evAlerting () isreceived by one of the instances in the RefSD

* Messages evOffHook () and evAnswerCall () occur in the MainSD

* evAnswerCall () sentby PBX[0]->itsline[1] issentto TelO in
MainSD

* evAnswerCall () isreceived by one of the instances in the RefSD
* System border sends evOnHook () to TelO in the MainSD
¢ One of the instances in the RefSD receives evOnHook () in RefSD

Note: Limitation - Type of message arguments going to decomposed life lines are not
known. All arguments are treated as input arguments.

In order to drive messages that are directed to decomposed life lines, a receiver instance
must be specified. Open the features dialog of the decomposed life line, click on Tags tab,
add a new tag RTC receiver (if not available) and also a value like Telephone[0] as
shown in Figure 3.

General | Relations Tags IF'rupewtiesI

mEx

= | Local

RTC_receiver

I Telephone[0

Figure 3 : Features dialog

The following rules are applied by TestConductor in order to drive those messages.

1. If an instance line is not decomposed
* not realized messages to such a life line are filtered out with a warning

e if the life line is not realized the test is not executed

182

2. If a life line is decomposed into ObjectAndltsParts
e if the life line is not realized the test is not executed

» if the life line is realized then for each driven message the tag RTC receiver is
used to define the proper receiver of the message.

* if'the tag is not defined then the message is sent to the instance the life line is
realized to.

3. If an instance line is decomposed into ObjectAndDerivedFromSD
» tag RTC receiver is used to define the receiver instance of driven messages

* if the tag is not defined then the message is sent to the instance the life line is
realized to

» if the tag is not defined and the message is not realized then the message is filtered
out

4. If an instance line is decomposed into Smart
* if areference sequence diagram has been defined then see 3.

e otherwise see 2.

Part Decomposition Support for Testing

183

PBX

OffHooki

|

pw Originate Call)

pe—
e Originate Call()

O Hookt)

f

—__——_—_——_——n

D I

r
General | Helatimsl Tags I F'mpertiesl

Mame: I _|_I

Stereatype: I

=l
Fiealization: CLQ_ FEXinFPhefka O =)
-

Decompased: I{Unspaciiad}

» General| Relations | Tags ~ Properties
Description:

Filker
|_ © Al Commen € Overridden © Locally Overidden

=| Animation
| Classifierfiole

 DisplayMessagesToself | Al

MappingPalicy ¢ objectandltsParts

Figure : ObjectSD

Life lines can represent objects and its parts. Consider the Sequence diagram “ObjectSD”
above. In the features tab for life line PBX, we have class PBX as Realization and
ObjectAndlItsParts as MappingPolicy. Instance line PBX represents object PBX and its
parts. evOffHook () and evOnHook () are sent to the parts of PBx from the environment.
TestConductor treats these messages as going to object PBX or any of it parts.
evOriginateCall () is an internal message of PBX, which is sent between the internal
parts of PBX. In other words, TestConductor takes a black box view for life lines with part
decomposition.

Advanced Sequence Diagram Test Definition

The TestConductor test definition dialog enables you to define and configure advanced
sequence diagram test cases. Using the dialog box, you can define a name of the test, a
description and you can add several sequence diagram instances to the test case. The
sequence diagram instances are marked as Monitor Only, Driver and Monitor or Black-
Box and parameters are bound to concrete values. In addition, for every sequence diagram
instance, you choose the interpretation order (Linear or Partial) and execution mode. The
Execution Mode specifies whether the sequence diagram instance must be tested one time
or repeatedly in a cycle. You can order sequence diagram instances with Single Iteration
or in an Ordered Predecessor order.

184

hneress i
Mame of Test:

ak.
I[es[case_'] _
Cancel |
Dezcription of Test:

jl Tolerances |
SDInstances in Test: Evecute Test |

Add SDInstance |
Eremove 50 nstance |

— Details of SDInstance

SDInztance Mame:

Apply S0 netance |
Sequence Diagram;
I j Fararneter i apping |

Execute SDInstance as: € Monitor Only € Driver and Monitor € Black-Box
SO Interpretation [Order); FPartial " Linear
Execution Mode
= Single lteration . . e

|0 Max # of Multiple lterations [0 == infinite]
£ bultiple (kerations
" [rdered Predecesson I ﬂ

Activation Condition:

" Description of SDInstance:

Defining a Sequence Diagram Test

There are four steps in defining a test using the Define Test dialog:

Create the sequence diagram test case.
Define a new sequence diagram instance.
Map the parameters.

Close the dialog.

el

The following sections describe these steps in detail.

Creating a Sequence Diagram Test Case
There are three possible ways to define a sequence diagram test case:
1. Right-click on the test context and select Create SD TestCase. This creates
automatically a new test scenario sequence diagram with lifelines of all classes (SUT

and test components) of the test context.
2. Right-click on the test context and select Add New > TestingProfile > TestCase.

For the second way you have to use the Define Test dialog (shown on page /85). Use
sequence diagrams could be sequence diagrams from the analysis phase, a recorded

185

animated sequence diagram from manually driven animation, or a newly drawn test
scenario sequence diagram.

Adding a New Sequence Diagram Instance

When you add an sequence diagram instance to a test case definition, you select and
reference a sequence diagram from the Rhapsody repository, define a name for that
particular instance in the test configuration, and bind the parameters to concrete values (if
parameters are used in the sequence diagram). TestConductor automatically extracts the
defined activation condition of the referenced sequence diagram from the Rhapsody
repository and displays it in read-only mode in the text field.

To add a sequence diagram instance to the list, do the following:

1. In the Define Test dialog box, click Add SD Instance.

2. The fields SD-Instance Name, Sequence Diagram, and Description of SD-Instance,
and the radio buttons Execution Mode, SD Interpretation (Order), and Execute
SD-Instance become enabled so that you can enter data.

3. Inthe SD-Instance Name field, type a descriptive name. For example, “Tel 1 calls Tel
27,

4. The Sequence Diagram drop down list includes all the sequence diagrams from all
packages specified in the project. From this list, select one sequence diagram. The
following figure shows the list of sequence diagrams for the PBX example.

— Details of SD-lInstance

SD-nstance Name:
ITeI1 calls Tel 2

Sequence Diagram:

[» L]

¥_calls_Y

Receive_x
#_calls Y _when_offhook
Anzwering Call

Hinging Another Party
Stub_Ring
%Eptule: All_Telephones ¥

drderediFredecessar |

Note: You do not have to save the sequence diagrams before using them to define and
execute tests because the created sequence diagrams are immediately part of the
model. The read-only field Activation Condition shows the corresponding value
for the specified sequence diagram. You can change this value by editing the tag
RTC ActivationCondition of the corresponding sequence diagram.

5. Inthe field Execute SD-Instance as, select one of the following options:

* Driver and Monitor—Invokes automatic driving of model execution after the test
has been activated. In other words, TestConductor automatically injects events into
the running Rhapsody model according to the specified sequence diagram.

* Monitor Only—Invokes manual driving of model execution. This means that,
during test execution, you must inject input events manually using the Rhapsody
animation tool or the project GUI (when available). TestConductor monitors the
reception of these events and internal messages between system objects.

186

6.

7.

8.

Black-Box—Considers only those messages that originate at the system border (to
be driven by TestConductor) or that go to the system border (to be monitored by
TestConductor). The remaining messages are not considered because they are
internal to the system.

In the field SD Interpretation (Order) select one of the following options:

Linear—Specifies that TestConductor should monitor the sequence diagram under
test assuming that all events and messages are arranged in a strict sequence. The
vertical drawing order of messages in sequence diagrams is used to compute an
absolute sequence of events and messages (each message in the sequence diagram
has a unique predecessor and successor).

Partial—Specifies that TestConductor should monitor only the order of events
located on the same line (instance line or message arrow).

Note that partial order set together with driver and monitor implies that driving the
input events is independent from monitoring the internal messages. To avoid the
arising nondeterminism, TestConductor first drives inputs and then monitors
internal messages. TestConductor chooses one valid order of messages to be
driven (in particular, this order changes in general when the same sequence
diagram test case is executed repeatedly). Such nondeterminism does not exist
for linear order interpretation, because it is a precise order between all messages in
a sequence diagram. See chapter Linear and Partial Order (on page 158), for the
explanation of partial order. Note that there is no nondeterminism for monitor only,
because you decide when you inject all inputs, and TestConductor monitors
internal messages as they appear in the running model.

In the Execution Mode ficld, select one of the radio buttons:

Single Iteration—Drives the sequence diagram instance only once. TestConductor
will generate only one run-time instance of the sequence diagram.

Multiple Iteration—Drives the sequence diagram instance in a cycle. This option
is defaulted to O which implies infinite execution of an sequence diagram instance
if the activation condition of the corresponding sequence diagram is set to TRUE.
When a concrete number is supplied here, it implies the number of times the
sequence diagram instance will be executed. In batch mode execution, the number
10 helps to avoid infinite looping of tests.

Ordered Predecessor—Specifies the execution order between two sequence
diagram instances. From the drop-down list, select an available sequence diagram
instance that must be executed before the current sequence diagram instance is
activated.

If desired, specify a description in the Description of SD-Instance field. This field
does not influence test execution, but can be used to describe the purpose of the
specific sequence diagram instance.

Mapping Parameters

For a parameterized Rhapsody sequence diagram, map its parameters to concrete values as
follows:

L.

Click Parameter Mapping to display the parameter mapping list for the sequence
diagram. For a “concrete” sequence diagram, this list is empty. The following figure
shows the parameter list for the Tel 1 calls Tel 2 sequence diagram.

187

Parameter Mapping List for Tel 1 calls Tel 2 !EIE

Parameter

| Walue

receiversLine
receiver
caller

nrl

nre

Cloze I

2. Double-click on the name of the parameter to map. The Define Parameter dialog is
displayed, which enables you to bind the parameter to a concrete value in the current
sequence diagram instance.

3. Inthe Value ficld, type an object name of the corresponding class, or a value for a

message argument.

: Define Parameter [x|

Parameter: Walue:
|PE=><[EI]->itsLine[‘l]

o |

Ireceiver.&Line

Cancel I

Click OK to add the specified parameter value to the list of the parameter mappings or
click Cancel to discard the changes.

3. Repeat Step 2 and Step 3 to bind all the parameters in the list to concrete values. The
following figure shows the completed list.

Parameter Mapping List for Tel 1 calls Tel 2 !EE

Parameter | Walue |
receiversLing PB&[0]-» itsLine[1]

receiver PEBX[0]-» itz T elephone(1]

caller PBEX[0]->itsT elephone[0]

nrl 1

nre 2

Cloze I

5. Click Apply to bind the values to the parameters and dismiss the dialog, or click Close
to dismiss the dialog without binding the parameters to new values. You return to the
Define Test dialog.

6. To add the current definition of the created sequence diagram instance to the test, click
Apply SD. The sequence diagram instance is accepted as part of the test
configuration.

If you do not apply the instance to the test, but continue with another sequence diagram
instance, TestConductor automatically applies the first instance for you. If you dismiss the
complete test case definition dialog, the sequence diagram instance definition is discarded.

Note: For each sequence diagram in the repository, you can add many sequence diagram
instances to a test (for example, with different parameter values). At any time, you

188

can easily modify any of the information specified for a given test. For example,
you could add other sequence diagram instances, or specify another instance
testing mode.

Don't care values, Ranges, and Tolerances
Don't care values

In some cases you might not be interested in checking actual parameter values. If
* Messages carry values that change whenever you re-run your application (sensor
values, etc.). TestConductor should not compare the actual values with the
specified values.

* Message parameter is a pointer to a structure. TestConductor can not compare the
actual values in the structure.

* Some specific parameter values are not interesting at all for your test. You can
switch on/off monitoring and checking of actual parameter values. For every
message playing a role in your test you specify don’t care either

e For a whole test, or
* For a single message instances in the used scenarios.

You can even switch on/off monitoring of parameter values for every single parameter of a
message

A.Sequence Diagram: TEST Don't care example, Instance Don't care example, Iteratio... =] B3

PBX[D]-> PHX[0]-> PBA[0]-> PEX[D)-> PBEH[D)-» PRX[0]- >
itsTelephone[0]. islineD):lne iteCallRouter: ftsConnection[D]: tteline[l]:Line itsTelephona(t]:
Telephone CallRouter Connection Teleohone
78 DffHook() a
7 by Originate Call() —
% ———
7) .
/ OpenConnection()
/ —
/ pen Connection
? ey Driginate i)
b evDialTone() ———————__
;/ __.-" ~ —‘——...____ e
¢ o .
7 " I
/% Digit Dialed(Digit=")
;!)\.r Digit D ialed(l:li'g;fj
e e igit Dizled(Digit=")
;ﬁ e Digit Dialed(Digit=")
7 S
" g Digit Dialed(Digt=")
% e
;/// !_HPIQI[DIElEd(DFgI‘_F]
s M |-

To specify tolerances as don’t care values:

* Replace the parameter values for message instances in the sequence diagrams with
the “*¢ symbol (see picture above), or

189

Press the Tolerances button within the Define Test dialog

Define Test & B3

N

Giving ™ for tolerance =
| -

Tolerances

PbxPka.evDigitDialed

- int Digit

PbxPka: Connection.NextDigit
- int Digit

The table lists all messages of all sequence diagrams used in the test

The don’t care values in the table ‘override’ concrete values in sequence diagrams
Double-click on a parameter to set/unset ‘*’ for the parameter

Double-click on a message to set/unset ‘*’ for all parameters of the message
Click on (Un-)Set All “*” to set/unset ‘*’ for all parameters of all messages
Don’t care information are stored with the test

Show As SD also shows use of don’t care values

Don’t care **’ can also be assigned to the variables used in sequence diagrams. Open the
parameter mapping window and assign ’*’ to the variables which you want to set as don’t
care which is equivalent to specifying ’*’ in the sequence diagram.

190

Parameter Mapping List for hhh [[C] %]

Parameter] Yalue |
nl 4]
n2 %

Don’t Care Value

Apply Close |

Note: Do not use ‘*’ for messages that are driven by TestConductor!

Note: You must not inject an event into your application with ‘*’ as value for an input
parameter

Range Setting

Range setting allows monitoring and checking if concrete values of message instances are
in a given specified range. Checking ranges is required if messages have parameters that
carry values which deviate from run to run. Speed and temperature are good examples
since it is unlikely that the values are always the same. Usually temperature is in a certain
range, e.g. between 36.5 and 36. 9 degree Celsius for humans. Users must be able to
specify that they do not care about specific single values, but about certain value ranges
throughout testing. Similar to *don’t care’ settings shown in the previous section, we use
the same Tolerances dialog to specify the ranges also.

* For every single message instance in a sequence diagram users can specify which
parameter should be treated as range of values. A special notation will be used to

indicate ranges instead of specific values. Notation:
[<lower value> .. <upper value>]

Users can express "m(pl=1, p2=*, p3=[1.5 .. 1.7])"to state that p1 must equals
'1', p2 is "don't care", p3 must be in the range between '1.5' and '1. 7'. In the PBX model,
we could use the range of [0..4] for the digit of the message evDigitDialed in
specified sequence diagram.

Note: lower value and upper value may be of scalar types like integer, long, double
etc.

191

PEX[0]-> PBA[O]-= PBX[0]-= PBX[O]-= PEX
itsTelephone[0]: || itsLine(0]:Line itsCallRouter. | |itsConnection[0]: | | itsLine[]
I T T T SR
g-_\iOrlqmaleCaII(] :|
evDialTonef)| |
‘f'/‘- __E_h"‘—h..
,—// T
.

AevDigitDialed(Digit= 1
//@%D‘.gﬂmﬂg d(Digit|= 2)
. :

—

W
o R o S I Ran_ge
- D'%i\f)xaiad[)' it4 (0 4] _.:\—_h_“.__,,:,_: Setting
evDigitDi igit 5 : - . f
‘*x? L‘»i ¥ n SD
-H"“M_ evDigitDialed(Digit 5 1)
N
pvDigitDialed(Digit =2}
S e g
R"‘mk DialingDane()
i S] s
o | A |)

Alternatively, users may want to specify one specific range of values for a given message
parameter for a whole test. This might for instance be desired if a certain measured sensor
value globally must be in a certain range. E.g. a measured temperature must always be in
the range between 0 and 100 degree celsius. Otherwise it is considered to be an error. For
the PBX model, we set the range of [0. .4] for the digit of the message
evDigitDialed () in the Tolerances dialog as shown below.

Tolerances E1

Parameters
PbxPka.evDigitDisled
-~ int Digit [0 4]
PbxPkg::Connection NextDigit

- int Digit Range Setting
PhsPka.evCloss T =

- int Source for the whole

PbxPkg::Connection Disconnect

- int Source test

] Tolerances I

(Un] Set Al ™ ok | cancel | Heip |

The range for the messages which has a parameter as a variable can also be specified in
the parameter mapping dialog as shown in the figure below. If we have n1 and n2 as

variables in the sequence diagram, we can set the range for variables in the parameter
setting dialog.

192

eyDigitDialed(Digit=1)
//;evﬁl‘gs‘rﬁu_\gd@\gn =2)

b
s

- |
. nglwg\tD|aIed(D\q\t= nl) Ranee Settine
™) =] =
g_leqitEiéhd(D\gn F n2)
e ™~ Don’t care
. pvDigitDialed(Digit Settine in

i Parameter

e
[% e Distit Digled(Dini =1

Apply I Close

Tolerances

Users may want to specify a tolerance for a message parameter for the whole test. Suppose
that a model contains a message M (temperature p). In a recorded animated sequence
diagram several instances of M might occur, because temperature is measured periodically.
E.g.M(p=27.6), M(p=29.2), M(p=31.1), etc. If such a recorded sequence diagram
is used for a test, the user must either manually specify a range of values for every single
message instance of M in the recorded sequence diagram, e.g. M (p=[27.4..27.9]),
M(p=[29.0..29.81), M(p=[31.0..31.5]) or we could define a global tolerance for
parameter p of message M in the whole test, e.g. "p = +-0.5", meaning that the concrete
values in the message instance might have a deviation of '+0. 5' from the specified values.

Note: Tolerances can be specified on a per test basis in the table. Users cannot specify
parameter tolerances in the sequence diagram.

Note: Tolerances cannot be specified in the parameter mapping dialog.

Note: Tolerances apply to both the parameter values and to parameter ranges.

Setting the tolerance of *+-2" for the parameter digit in the PBX model is shown in the
following figure. Message evDigitDialed (Digit = 1) is seen by TestConductor as

evDigitDialed (Digit = [-1 .. 31]),whichisarange of ’+2”and
evDigitDialed (Digit = 2) is seen by TestConductor as evDigitDialed (Digit =
[0 .. 4]),whichis arange of *+2” as specified as the tolerance.

193

Tolerances x|

Parameters | Tolerances |
PbrPkg.evDigitDialed
- int Digit 2

PbxPlkg::Connection. NextDigit

- int Digit

PbxPkg.evllose PP
- int Source Rangli‘ of 4 -.2
PbxPkg::Connection. Disconnect set 101’ Ihe Dlgl’[

- int Source

o

%

Cancel | Help

[Un) Set All I

a#enConnecticn
e OniginateCall()
ewDialToneq
o ~
J//
ke
v Digit Dialed(Digt = 1)
VoigaDised Ot -) |DpenConnedtion
. ~ . : . evOriginateCall(y
‘\“‘a.__ E\:E‘Ignﬂlaleﬂfﬂlgn =11 evDia\Toneq ‘—“_ﬁ-——__.__
T . ~ T
e Digit Dialed(Digh = 7 o
e e
PR LLJD\gnDi:Ied(Dig =1) DigitDialediDigitr1)

DigitDialed(Digifr2)
evligitDialed(Digitc[-1..3])
;rtTgitQ_i{Isd(Diglh[D 4D

- _‘.“ -"‘--\.u\hj
; kuDigithialed(Digite[-1..3))
K"_L‘_.-_‘-ﬁ_""— s
puDigithia |-aa(b“ugn:pj_.312__

- _\E\ -
~.

.

-

=4 ~—
v Digit Dialed{Diog-=7)

ri:

e

.

f'{l'
/
/
/

R R T ...
I

I SRy

Priority rules for the Tolerances

TestConductor will apply priority rules on the parameter values for test execution in the
following order:

1. Ifin the Tolerances table a parameter is set as don't care '*' this will be applied for test
execution

2. Ifdon’t care’*’ is set in the sequence diagram, this will be applied

3. Ifarange of values has been specified in the Tolerances dialog, it will be applied for
test execution

4. [If atolerance has been specified in the Tolerances dialog this will be applied for test
execution

5. Range setting in the parameter mapping dialog or the range setting in the sequence
diagram will be applied.

6. Next the value setting in the parameter mapping window or values as specified in the
sequence diagrams are used for testing

194

Note: Value ranges and tolerances can not be applied to messages driven by
TestConductor, since driving always requires concrete values.

Note: Value ranges and tolerances can be used only for pre-defined scalar types int,
long, float, etc. such that TestConductor can apply standard compare
operations (<, >, =) for the checking.

Note: Ranges of values and tolerances can not be applied to structured types or user
defined enumeration types.

Syntax for Tolerances

The syntax for specifying don’t care values, range values and tolerances is as follows:

e Don’t care: *
* Range value: [<lower value> .. <upper value>]
¢ Tolerances: <tolerance value>

where lower value and upper value and tolerance value can be of pre-defined scalar
types int, long, float, etc. such that TestConductor can apply standard compare
operations (<, >, =) for the checking. While don’t care values and range values can be
specified in specification sequence diagrams, in the Parameter mapping dialog and in the
Tolerances dialog, tolerance values can be specified only in the Tolerances dialog.

Exiting the Define Test Dialog Box

There are two ways to exit the Define Test dialog:

* Click OK to save the test.
If you click OK, TestConductor automatically adds all your test modifications to
the current model.
Alternatively, you can add the current test to the model and exit the editor by
pressing Enter, but only if the Description of Test and Description of SD-instance
fields are not currently active. If you press Enter in the description fields, it adds a
line-feed in the description.

Note that the TestConductor dialog accepts any test definition, even if it is
incomplete (for example, you did not specify a sequence diagram instance). If you
try to execute an incomplete test configuration, TestConductor displays an error
message.

* Click Cancel to discard the test.
To ignore all changes made during the test definition session, click Cancel.
TestConductor prompts you to confirm the lost changes; click Yes.

Note: It is not possible to execute tests directly from the Define Test dialog.

195

Use Cases of Sequence Diagram Test Cases

This section shows some sample test cases including different combinations of sequence
diagram instance settings (execution mode, sequence diagram interpretation order with
monitor or driver), as well as combinations of different sequence diagram instances to be
executed in one test with different modes.

Simple Monitor

This example explains how to define a simple watchdog. The following figure shows a
test configuration with independent sequence diagram instances to be driven manually,
infinitely many times. TestConductor monitors whether the computed order of messages
corresponds to that specified in the sequence diagrams.

Define Test == E3
e o Tedt
IAII call Telt

Cancel

'

Description of Test:

|ﬂll Telephones call Telephone(0] independertly j_l S — |
SD-Instances in Test: Execute Test |

Tel3 calls Tell
Teld calls Tell Add SD-Instance I
Remove SD-InstanoeI
Details of SD-Instance
5D-nstance Name:

ITeI2 calls Tell Apply SD-Instance I

Sequence Diagram:

IA telephone calls Telephonel_Varnables _'_I Parameter Mapping I

Execute 50-Instance asx & Moritor Only ¢ Driver and Monitor (Black-Box
5D Interpretation [Order): % Partial " Linear
Execution Mode ‘

" Single |t=ration | ax ft of Multiple lterations [0 == infinite|
&+ Multiple Iterations g i =]

€ Ordered Predecessar I Parameter Mapping List for Tel2 calls Tell P S |

vt i Parameter | Value |
Activation Condit
]TREE al = caller PEX[0}->itsTelephone(1]

" Description of SD-Instance: ——

]

To define this watchdog, do the following:

1. Modify the “A telephone calls Telephone[0]” sequence diagram to make it generic:
* In the sequence diagram editor, replace the concrete object name
PBX[0]-> itsTelephone[1l]:Telephone with the parameter
caller:Telephone.

196

2.

S.

Select in the Rhapsody browser the test scenario “A telephone calls

Telephone0 Variables” and click on the cross beside of the name of the test scenario

sequence diagram to open the tag view.

- E—'i-'n TestScenarios
+-ElL telephone calls Telephoned
i, & kelephone calls Telephone0_Wariables

= Iﬁ Tags
RTC_AckivationCondition

RTC SDParameters

' Answering_Call

Answering_Call_without_aC

Receive_x

Ringing_Anokher_Parky

Stub_afker_animakion

Skub_Ring

W Calls_y

Open the Feature dialog of the RTC_SDParamters tag
Select the General tab, click into the Value field and type caller, the name of the
parameter.

Tag : RTC_SDParameters in A telephone calls Telephoned *

General l Description]

Manne: |FiTI:_SDF'arameter$ ﬂ
Applicable to: | J

Type: |String ﬂ J
Walue: |caller i J

Lu[:ate| OK |4El;|]|]I'5..-r |

Apply the changes and close the Feature dialog

To define a new test case and connect the sequence diagram, do the following:

6.

7.
8.

9.

10.

11.

Select the test context and choose from the context menu Add New > TestingProfile
> TestCase
Rename the newly created test case to “All _call Tell”
Select the test case “All_call Tell” and choose from the context menu Edit TestCase
SDInstance
Verify the name of the test “All call Tell” and add the description “All telephones call
Telephone[0] independently.”
Click Add SD-Instance. Type the name of the sequence diagram instance “Tel2 calls
Tell” and select the sequence diagram “A telephone calls Telephone[0]” from the
drop-down list.
Select the following radio buttons:

Monitor Only execution

Partial order, to set manual driving

197

Multiple Iteration, to have TestConductor check this property several times
during test execution

12. Click Parameter Mapping to display the list of parameters for the sequence diagram
and double-click caller.

13. Insert the formal name of Telephone 2, “PBX[0]->itsTelephone[1]”, then click OK.

14. In the Parameter Mapping List, click Apply to bind the parameter with the concrete
name.

15. If desired, add a description of the sequence diagram instance in the field at the
bottom of the dialog box. For example, you could describe the requirements specified
in the corresponding sequence diagram.

16. Click Apply SD-Instance. TestConductor adds the specified sequence diagram
instance to the SD-Instances in Test list.

17. Repeat Step 1 to Step 6 to create two other sequence diagram instances with similar
settings and parameter mappings that correspond to Telephone 3 and Telephone
4.

The completed test checks that Telephones 2, 3, and 4 can call Telephone 1 inany

order. You can execute the test infinitely many times by injecting events manually, as

specified in the “A telephone calls Telephone[0]” sequence diagram.

Automatic Driver

This example shows how to define an automatic driver with several independent sequence
diagram instances. The following figure shows a test configuration with independent
sequence diagram instances of the “X calls_Y” sequence diagram (see page /72) and the
“Receive X" sequence diagram (see page /71). You specify the implicit order enforced
between some of the sequence diagram instances using the activation conditions and
parameter mappings. TestConductor drives events sent from the environment axis and
monitors whether the order of “internal” messages corresponds to that specified in the
sequence diagrams.

198

Define Test M= B
Harne of Test: 0K
Ilndependent Callz _
Cancel |
Description of Test:

Two telephones call other bwo tzlephones at the same time jl S |
SD-nstancesin Teast: Execute Test |

Tell callz
Teld call: Teld
Tel? receive: a call Add S0-Instance |
Telt receive: a cal
Remave SD-Instancel

 Detals of SDdnstance

S0-Inztance Mame:

ITeI1 call: Tel2 Apply 5D nstance |

Sequence Diagram:

Ibd_calls_"i’ ;I Pararnster Mapping |

Execute SDHnstance as: € Moniter Only - & Driver and Monitar © Black-Box

SO Interpretation [Order): & Partial * Linea
Execution Mode
' Single lteration : . .
: ; |[| tan # of Multiple Iterations [0== infinite]
" Multiple lterations
t"‘ DldEllEldplEldElCEISSDrZI j

Actvation Condition:

INEIT[c:aIIersLine-)E\-ent Parameter Mapping List foi Tell calls Tel2

Dieceription of SD-rstan | Pararmeter I Walie I
receversCigh] 1
recaiveraligk2 2
calersLine FEa[0}>kzLing|d]
caller FE=[0] » k2T elephonel0]

Apoly Lloze

Mapping the parameters of the “X_calls X" sequence diagram to different concrete names
for different sequence diagram instances makes these sequence diagram instances
completely independent. To define the automatically driven independent calls test, add
four sequence diagram instances with the settings described in the following summary of
the test.

199

&} Independent Calls_info_txt - Notepad =1 E3

File Edit Format Help

TEST: mainfoldersIndependent Calls ; -
COMMENT: "Two telephones call other two telephones at the same time"
INSTANCES:

1. Tell calls Tel2
COMMENT = ™"
DEFINITION:
Sb <x_calls_¥>», DRIVER, LINEAR, SINGLE ITERATION
AC <NOT(callersLine->EventReceived(caller,evRing()2)>
PARAMETERS :
receiverspigitl Ly
receiverspigit2 2
callersLine = PEX[0]->7tsLine[0],
caller = pPEx[0]->1tsTelephone[0]

2. Tel3 calls Teld
COMMENT: ™"
DEFIMITIONM:
SD <x_calls_¥», DRIVER, LINEAR, SINGLE ITERATION
AC <MOT(callersLine->eventReceivedCcaller,evrRing()l)>
PARAMETERS :
recejversbigitl = 1,
receiverspigit2 = 4,
callersLine = PEX[0]->7tsLine[2],
caller = PEX[0]->itsTelephone[2]

3. Tel2 receives a call
COMMENT : ™"
DEFINITION:
SD <Receive_x>, DRIVER, LINEAR, SINGLE ITERATION
AC <receiversLine-»Eventsent(receiver, evrRing()):
PARAMETERS:
receiversLine = PEX[0]->itsLine[1l],
receiver = PBEx[0]->7tsTelephone[1]

4. Teld receives a call

COMMENT 2 ™"

DEFINITION:
SD <Receive_x», DRIVER, LINEAR, SIMNGLE ITERATIOM
AC <receiversLine->Eventsent(receiver, evRing())s>

PARAMETERS:
receiversiLine = PBx[0]->itsLine[3],
receiver = PBX[0]->itsTelephone[3] -

This test checks that Telephone 1 can call Telephone 2, and Telephone 3 can call
Telephone 4 independently at the same time. In addition, it checks that Telephones
2 and 4 can reply and complete calls independently. The test can be executed only one
time due to the selected Single Iteration for all SD instances in the test configuration.
Setting Multiple Iteration to 0, with driver and monitor mode can lead to infinite test
execution. In this case, you should specify adequate activation conditions for the
corresponding sequence diagrams.

Ordered SD Instances

Using activation conditions, you can specify a predecessor order implicitly. This order
might depend on the parameter mapping, and is an order of sequence diagram instance
activations. For example, during execution of the test described in the previous section,
the “Tel2 receives a call” sequence diagram instance is activated before the “Tell calls

200

Tel2 SD” instance has been fully traversed. The following example shows the usage of
explicit ordering of sequence diagram instances within a test configuration.

Note: Currently, TestConductor does not support ordered predecessors with multiple
iterations.

The “Calling_All Telephones” test configuration contains the following instances:

* Fourinstances (Receiver 1,Receiver 2,Receiver 3, and
Receiver 4)ofthe “Answering_Call” sequence diagram. These sequence
diagram instances are specified as driver and monitor with linear order and
multiple iterations. They have disjointed parameter mappings (different concrete
names bound to their parameters).

* Six instances of the “Ringing_Another Party” sequence diagram (see the section
“Condition Marks”). They are set as driver and monitor with linear order. They
specify calls from Telephone 1 to Telephones 2, 3, and 4, and from
Telephone 4 to Telephones 1,2,and 3 with predecessor order as
follows:

The “Tel 1 calls Tel 2” sequence diagram instance has single iteration.

The “Tel 1 calls Tel 3” sequence diagram instance has “Tel 1 calls Tel 2 as
its Ordered Predecessor.

The “Tel 1 calls Tel 4” sequence diagram instance has “Tel 1 calls Tel 3” as
its Ordered Predecessor.

The “Tel 4 calls Tel 1” sequence diagram instance has “Tel 1 calls Tel 4” as
its Ordered Predecessor.

The “Tel 4 calls Tel 2” sequence diagram instance has “Tel 4 calls Tel 1” as
its Ordered Predecessor.

The “Tel 4 calls Tel 3” sequence diagram instance has “Tel 4 calls Tel 2” as
its Ordered Predecessor.

The following figure shows the corresponding settings in the Define Test dialog.

201

Define Test MiE E
Mame of Test:

ICaIImgLA\LT elephones
Cancel I
Description of Test

Tel_1 calls evervbody and Tel_4 calls everybody jl o I
SD-nstances in Test: Execute Test I

Receiver_1

Receiver_2
REEE}::::G j Add ED-Instance I

Receiver 4

i ;I Remave SD-Ir:stamcI

(Deetails of SD-Instance
5D-Instance Name:
ITeI_1 calls Tel_2 Apply SD-Instance I
Sequence Diagram:

IFlmgmg_Another_Pany ;I Parameter Mapping I

Execute SD-nstance as: € Monitor Only = Driver and Monitor © Black-Box
SD Interpretation (Order: ¢ Partial &+ Linear
~ Execution Mode

Parameter Mapping List for Tel_1 calls Tel_2

% Single lteration I—
A Z 0 Ma
" Multiple Iterations Parameter | Value |
€ [rdered Fredecesson I receiversLine PBX[0)->itsLine(1]
eceiver PEX[0}>itsTelephone(1]
Activation Conditior: il 1
]caller->lslr(RDDT,Rea¢-,ld\e] Cazﬁw ;‘BX[UJ-NtsT elephone(0]
i
(Description of SD-Instance:
Apply I Close

During test execution, each of the last five sequence diagram instances can be activated
only when the following two conditions are fulfilled:

* The sequence diagram instance specified in the test configuration as its predecessor
has been fully traversed (passed or failed).

e [Its activation condition becomes TRUE.

The specified test checks the following:

* Telephone 1 can call all other telephones consecutively.
* Telephone 4 can call all other telephones consecutively.

* Telephones 1,2, 3,and 4 can answer calls as many times as they get the
event evRing (as specified in the activation condition of the “Answering_Call”
sequence diagram).

Driver-Assisted Monitor
The following examples show how to use driver-assisted monitors.

Example 1: Monitors and Drivers Specified as Sequence Diagram

202

This example shows how to define a combination of drivers and monitors. The
“Driver_Assisted Monitor” test configuration contains instances of the “Receive X”
sequence diagram (see page /71) and the “X calls_ Y sequence diagram (see page 172).
The sequence diagram instances have the following settings:

* Fourinstances (Receive 1,Receive 2,Receive 3,and Receive 4)of
the “Receive X sequence diagram are specified as driver and monitor with linear
order and multiple iteration. Their parameter mappings correspond to
Telephones 1,2,3,and 4 and Lines 1, 2, 3, and 4, respectively.

e Fourinstances (“Tel 1 calls Tel 2”,“Tel 2 calls Tel 37, “Tel 3
calls Tel 4”,and“Tel 4 calls Tel 1”)ofthe “X calls Y” sequence
diagram are specified as monitor only with partial order, single iteration, and the

corresponding parameter mappings. The following figure shows the example of the
parameter mapping for the “Tel 2 calls Tel 3” sequence diagram instance.

Define Test M= B3
Hama of Tesf

- - ak
|D||\-er_f-‘-sssred_h-10ntol
Catcel
Dezeription of Test:
ITeIeDhones rall each oiher ﬂ i

s0-Instancas in Test: Expoute Test

-

J Add 50-Instance

|»| Hemove S0-Insiance

—Detailz of 30-nstance
SO kstakiee M ame
|Te|_2 call: Tal_3 Apply S0 -lnatancs

[l B

Sequence Diagram:

|><_-:a|s_"r' ;I Paramzter Mopping I

Execute SU-nslance as: % Monifor Only © Driver and Moeitor 7 Black-Box

SO Interpretation [Oder; ™ Paitial " Linear
Execution Mode
" Singla lberation : Fen
£ ! ||] Max ¥ of Multiple lerations [0 == infinite]
1 Mubiple Iberations
' Didsred Fredecessor [Tel 1 calls Tel 2 =l

Aclivation Condtiar:
IHDT[DnllcrsLh-:-)EvcntHcc:ivcd[calcr,cvﬂingl]]]

e el A e ge] b afameter Mapping List ol Tel 2 calls Tel 3
“ Pararnztzr | Wabic |

receyersDigt] 1

receveribigi? 3

calersLing PBX[0)»ksLing1]

caler PE:-[0]» keT elephone]1]

Apaly Cloze

The test checks that every telephone can call the next telephone, and the telephone can
reply and finish the communication. This test can be done for every specified pair of the
telephones, independent of the order of the pairs. During test execution, you must drive

203

the model manually, as specified in the instances of the “X calls_Y” sequence diagram.

TestConductor completes the execution of the instances of the “Receive X sequence

diagram whenever they have been activated.

Example 2: Unspecified Manual Driving

You can drive your model manually in an order not specified in any sequence diagram.
This means that you do not check this part of a behaviour. For example, you can specify
only communications between actor instances and internal objects when the actors have
behaviour (code has been generated for them). The following sequence diagram shows

such a specification for a new model. In this case, the new events evSuspend and
evRestart are senttothe Line class from the Administrator actor.

Sequence Diagram: testActor

CE|

|

User caller: callersLine: Administratar
Telephone Line
2 evSuspend() =t
,_ P e
’ o evRestan()
- e S
“evOfiHook(
}—__———_
5 i
S evDialToned)
7 4
, E\rDlg‘rtQiElEd([Jigrt:U
vy = T
FI e
& --\"“"h.. ..-H\‘“-i
evDigitDialediBigit=nr2
7 T
‘ avRelease()
4 R 5
&

~]¢]

The following “Check Administrator” test configuration defines a driver with an instance
of the “testActor” sequence diagram.

204

TEST: Check Administrator
COMMENT: "First Administrator sends events to Line 1.
After that User can make a call from Telephone 1."

INSTANCES :

1. Tell calls Tel2
COMHMENT: "™
DEFINITION:
SD <testActor>, DRIVER, LINEAR, SINGLE ITERATION
AC <TRUE>
PARAMETERS :
callersLine = PBX[0]->itsLine[0],
caller = PBX[8]->itsTelephone[8],
nr2 = 2

This test checks that a new feature added to the system as the Administrator behaviour
does not change the main behaviour of the model (in other words, User can make a call as
previously specified). During test execution, you must inject input events for
Administrator and User to stimulate them to send events specified in the “testActor”
sequence diagram. TestConductor monitors all messages between the actors and internal
objects specified in the sequence diagram under test.

Choosing Between Alternatives in a Cycle

The predecessor ordering of sequence diagram instances provides a means to construct a
tree or a forest (set of trees) of the related sequence diagram instances, but does not allow
any cycle or choice between alternatives. Activation conditions/condition marks serve as
another way to set causal dependencies between sequence diagram instances. The
following test configuration explains how to combine predecessor ordering with multiple
iteration to specify cycles with choice.

Consider the “X _and Y call together” sequence diagram, with partial order
interpretation.

205

Sequence Diagram: X_and_¥ _call_together

caller1: callersLine: callersLine2: caller2:
Telephone Line Line Telephone

-
l—

Er‘:'\a’-:ﬁéécalle 12, evCiMaok()

ENY- ‘Ef callgr evOiFHook())
' '

evOriginateCall() |

P

—
evOriginateCall()

_evDigitDialed{Digit=1)
evDigitDialed{Digit=1) "

evDigitDialed(Digit=nr2}

pvDigitDialed{Digit=nr1)
___—_—__———_

e

==

The specification says that two telephones can dial any numbers independently of each
other whenever the environment sends them the evOf fHook event. If these telephones
call each other (specified by the corresponding mapping of the parameters nrl and nr2),
the continuation depends on the order in which you have injected events from the
environment to the telephones. A callee can be busy or answer the call.

The “Stop_Busy_ Call” sequence diagram, shown in the following figure, specifies that a
caller put the telephone on the hook if it gets the evBusy event. The “Busy or Free” test
includes instances of the “X _and Y call together” sequence diagram, the

“Stop Busy Call” sequence diagram, and the “Answering_Call” sequence diagram.

= Sequence Diagram: Stop_Busy Call -Flm

caller:
Telephone

I»

. e 1 Sy
cLine->EgentSerticallerevBusy()

=

evOnHook()

¥

RERRI SR

=

The following figure shows the corresponding settings in the Define Test dialog.

206

ine Tesl

Hzame of Test:

IB uzp_or_Frea

Dezcription of Test:

Tel2 and Tl call cach ather at the zanne or diferent bime. ;I
Check whether a call free or busy. =

S0-Instancas in Test:

HIE E

Cancel |

Tolerances |

Execute Test |

Tel2 stap:
Tel3 stops
Tel? arawers
Teal? arawaiz

i Details of 30-Instancs
SDretance Mame:

Add 50-Instance |
Femcyve SD-Instanc:el

|Tel2 and Tel2 cal

Sequence Diagrar:

|><_und_Y_cuII_tnch1:r

Executs S0-lnstance as:

5D Interpretafion [Drderk

% Wonitar Oy Driver ard Moritar) Black-Box
= Partial " Lingar

Apph SD-lnstance |
d Paramster Mapoing |

Execution Mode
" Single lieration
& Mutiple [teratiors

7] 20 H LG
T Creerad Fredezsssrn:

ieter Mapping List bor Tel2 and Tel3 call

Activation Condtior

ITF!LIE

Dezcription of SD-nstance:

Faranetsr I Walue
calersLine? PRI0] > £sLinel2]
caller] PEA[D] > isT cleghane]1]
calerd FEX[0]»kzT eleohaong] 2]
nrl 3
nré 2
calersLinel PE[0)-»ksLinef1]
— i

The following information file of the test case definition summarizes the complete test

description.

TE=T: MairFoldar\Busy_or_Freal,

Time.
icheck whether a <211 fres or busy."

IMSTAMCES:

1. Telz STOps
COMMENT :
DEFINITION:
S0 <SLOP_Busy_all», DRIVER, LIMEAR, MULTIPLE
AT eTRUES
PARAMETERS :
cLine = pEx[0]->1tsLine[1],
caller = PEX[0]->itsTalephona[1]

2. Tel3 stops
COMMENT; "
DEFINITION:
50 «Stop_Busy_Call>, DRIVER, LINEAR, MULTIFLE
AT <TRUE>
PARAMETERS @
cLine = pEx[0]->1tsLine[2],
caller = PEx[0]-=1TsTelephonelz]

3. Tel2 answers
(COMMENT: ™"
DEFTMITION:
sD <Answering_cCalls, DRIVER, LINEAR, MULTIPLE
ac crecelversiine-ses(receiver, evRino()>
PARAMETERS :
receiversLine - pEx[0]-=itsLinall],
recelver = pex[0]-xTrsTelephone[1]

4. 1213 answers
CoMMENT: "
DEFINITION:
s <Answering_calls, DRIVER, LINEAR, MULTIPLE
aC sreceiversLine—zes{recsiver, evRing()>
PARAMETERS :
receiversLine = pEx[0]-=itsLinal2],
receiver = pEx[0]-r1tsTelephone[z]

5. 712 and TE1Z call
(COMMENT: "'
DEFINITION:
=0 ex¥_and_v_call_togethers, mMOMITOR, PARTIAL,
ITERATIONS
AC STRUER
PARAMETERS :
callersLine? - pax[0]-=itsLin=l2],
callerl = Psx 0]—)—1'ESTE'|ED|‘IDHEE1],
callerz = pax[0 :

-»itsTelephona[2
nrl - 2,
nrz = 2,

callersLinal = PBX[0]-»TtsLinal1]

ComMMENT: "TelZ and Tel3 a1l each other at the same or different

ITERATIUNZ

ITERATIONS

ITERATIONS

ITERATIOMNS

MULTIPLE

207

The test checks the following:

* Telephone 2 and Telephone 3 call each other independently.
* Ifacallee (Telephone 2 or Telephone 3)is free, it answers the call.

* Ifacallee is busy, the caller hangs up.

You can execute the test continuously, injecting events to Telephone 2 and Telephone
3. TestConductor monitors the “Tel2 and Tel3 call” sequence diagram instance and
drives the remaining ones, selecting those relevant to the current situation. Note that the
instance of the “X_and Y call together” sequence diagram is the predecessor for the
remaining four instances in the test configuration. This means that the sequence diagram
instances “Tel2 stops”, “Tel3 stops”, “Tel2 answers”, and “Tel3 answers” can
be activated only after the Te12 and Tel3 call instance has been activated and partially
traversed. This order (and the choice between alternatives) is specified with the activation
conditions and Condition Marks, but become valid only after the parameters have been
bound to the corresponding names.

User Defined Driving Operation Calls

The default implementation of a driver operation generated by TestConductor may be
overwritten and customized by the user, by stereotyping the message with stereotype
<<RTC MsgInfo>> in the sequence diagram and setting the corresponding values for the
tags

TestBehavior::RTC MsgInfo::RTC DriverCallCode,
TestBehavior::RTC MsgInfo::RTC DriverCallCodeAdditional,
TestBehavior::RTC MsgInfo::RTC DriverInitCode,
TestBehavior::RTC MsgInfo::RTC DriverInitCodeAdditional,

MMessage ; eyStart

General] Descriptinn] Felations Tags lF'ru:uperties

-'| TestBehavior

- RTC_Maginfo
RTC_DriverCallCode
RTC_DriverCallCodeasdditional
RTC_DriverInitCode
RTC_DrivernitCodesdditional
RTC_Monitor O
RTC_Msgld
RTC_Receiver
RTC_SUJhE-Dd}rCDde

208

Usually, if the user modifies driver operations in the model, then this information is lost if
the user updates a test case. The user can influence the generated code for driver
operations and stub operations. Using the tags

TestBehavior::RTC MsgInfo::RTC DriverCallCode,
TestBehaVior::RTCiMsgInfo::RTCiDriverCallCodeAdditional,

TestBehavior::RTC MsgInfo::RTC DriverInitCode,
TestBehavior::RTC MsgInfo::RTC DriverInitCodeAdditional,

the content of these tags is not lost during update of a test case.

The value for RTC DriverInitCode is taken as the beginning of the driver operation
body containing the initialization of necessary variables, whereas the value for

RTC DriverCallCode is taken as the trailing part of the driver operation body
containing the call of the function to be driven.

Driver Operation : SD_tc_0_evBarcode_1 in TC_at_hw

Genelall Description Implementatiorn l.&lguments] Helationsl Tags] F'mpelties]

|void SO tc 0 evBarcode 1[)
Ul /*é*ﬁ**ﬁ*#ﬁ**é*#ﬁ**é*#ﬁ*ﬁ*#ﬁ**é*#ﬁ**ﬁ**ﬁ*é*#ﬁ**ﬁ**ﬁ**ﬁ**ﬁ*#ﬁ#ﬁ**ﬁ**ﬁ*# e
oz Driverdperation generated by Testlonductor
a3
04 TestCase : SD tec O
a5 Meszage D message 2
oe Gl
o7 The Driver Tnitialisation Code contains the value of the
0s Message Tag TestBehavior::RTC Msginfo::RTC DriverInitlode,
os 1f the Tag value is not empty. Otherwise, the Driver
10 Initiglisation Code is automatically generated.
11
1z The Driver Call Code contains the value of the
13 Message Tag TestBehavior::ETC Msginfo::RTC DrivercCallCode,
14 if the tag walue is not empty. Otherwise, the Driver
15 Czll Code is gutomatically generated. e
16 :E>-€-»(-:G*:GA—»(-:E>-€-A-:GA—»(-:EA—A-:GA—»(-:GA—*A—*:E>-€-»(-:G;(-*:EA—*:GA—*:E>-€-A-:C-*:C-A—*:G**é**é**é**é****é**é**éf
17
s ———————————————
19|/ Driver Imitisglisation Code:
20l ——_—————————————————
21
2zZint osc_arg 1 = 12345;
e e e L —
24|/ Driver €311 Code:
| M R s e T R —— R —————————————
26
27| OUT_FORT (hw) —>GEN (evBarcode (osc_arg 1))
Z8

b4
4| | 3
Lucate| 0K | |

Note that both properties can be overwritten separately by the user. In case the user wants
to customize the initialization section only, only the property RTC DriverInitCode has
to be overwritten; TestConductor will continue to automatically generate the code for the
driver call section (and vice versa).

The value for RTC DriverInitCodeAdditional is taken as additional initialization
code that is generated in addition to the initialization code generated by TestConductor.
The content of this tag is generated directly after the auto generated initialization code.
Similarly, the value for RTC DriverCallCodeAdditional is taken as additional call

209

code that is generated in addition to the auto generated call code. The content of this tag is
generated directly after the auto generated call code.

RTC_DriverlnitCode and RTC_DriverinitCodeAdditional

The user can influence the initialization of arguments before the message is driven using
the tags RTC DriverInitCode and RTC DriverInitCodeAdditional. To do this
uses have to add the stereotype RTC_MsgInfo to the SD message. This adds automatically
the tags RTC_DriverInitCode and RTC DriverInitCodeAdditional to the
message. The user can fill these tags with code which will be used as initialization code of
the driver operation when the test case is updated. Important is that the context of

RTC DriverInitCode completely replaces the initialization code that would be
generated by TestConductor automatically, whereas the content of

RTC DriverInitCodeAdditional is simply added to the auto generated initialization
code.

In some cases it is advisable that the user copies all or the needed parts of the
automatically generated driver initialization code section and paste it into the tag
RTC DriverInitCode before starting to implement his own changes.

Message : evBarcode [EES]
General] Description] Relations Tags]Properties]
i x
= | TestBehavior
=l RTC_Msglnfo
RTC_DriverCallCode
RTC_DriverInibCode | [J
RTC_Monitor O
RTC_Msgld message_2

RTC_Receiver
RTC_StubBodyCode @

Quick 4dd

M ame: | Walue: | Add

Locate| 0K | |

RTC_DriverCallCode and RTC_DriverCallCodeAdditional

The user can also influence the call of the driven operation using the tags

RTC DriverCallCode and RTC DriverCallCodeAdditional. To do this he users have
to add the stereotype RTC_MsgInfo to the sequence diagram message. This adds
automatically the tags RTC_DriverCallCode and RTC DriverCallCodeAdditional
to the message. The user can fill these tags with code which will be executed after the
initialization of arguments. Important is that the content of RTC DriverCallCode
completely replaces the code that would be used to invoke the driven operation if
TestConductor generated the code automatically, whereas the content of

RTC DriverCallCodeAdditional is simply added to the auto generated call code.

Note, in this scenario the user has has the responsiblitythat the sequence diagram test case
is indeed executable after customization. Basically, the specified message of the sequence

210

diagram test case, which now is present as source code, has to be represendted in the user
defined code.

In some cases it is advisable that the user copies all or the needed parts of the
automatically generated driver call code section and paste it into the tag
RTC DriverDriverCode before starting to implement his own changes.

Message : evBarcode

General] Description] Felation: Tag: lProperties]

=I| TestBehavior

=l RTC_MsgInfo

Py SECa R RTC_DriverInitCode int osc_arg_L = 123541

A/ Driver Call Code: RTC_Monitor D
£ = =

RTZ_Msgld message_2 !
OUT PORT (hw) —>GEN (evBarcode RTC_Receiver M
RTC_StubBodyCode l

e

Clean TestComponent

Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of a test component at once.
To clean a test component select the test component und choose from the context menu the
item Clean TestComponent.

211

= j TestComponents

--Gh Defal Features
+-@3 ol Features in Mew Window
+- Drivel
-5 Oper: Add Mew 3
+= Ports) gegreh,
- Stubt Search inside. ..
= References...
- stubg
- 3l Create Unit
+- 3l
4 Super Change ko 3
* TC_For it configuration Management »
+ TC_for_it
= ﬁa TestContexts Implement Base Classes. ..
-3 TCon_Ca:
3 Generate
+|--L Links I
+ g SUTs nsats
4 &7 Testt Roundtrip
®
=% TestC Edit Type Order...
+ ’.;_..- al
+-%. al Assocate Image
- al
s Delete from Model
- al
+- ¥, al TestZormponenk
+ x-:_.-' abg=rcoer) —

Clean TestPackage

Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of all test components of a
TestPackage at once. Furthermore, Clean TestPackage also deletes all results and
coverage results from the TestPackage.

To clean a test package select the test package und choose from the context menu the item
Clean TestPackage.

To regenerate the driver an stub operations select the test case or the test context or the test
package and choose from the context menu the item Update
TestCase/TestContext/TestPackage.

Deleting User Defined Driver Operation Calls
TestConductor uses user defined operation calls if the tags
TestBehavior::RTC MsgInfo::RTC DriverInitCode and
TestBehavior: :RTC MsgInfo::RTC DriverCallCode are not empty, even if the
tags are overwritten. To delete the user defined operation call and use the auto generated
driver operations from TestConductor, reset the tags to delete the content of the tag.

212

Message : evSkark

General] Description | Felations: Tags l Froperties

=I| TestBehavior

=l RTC_Msaglnfo
RTC_DriverCallCode RTC_ASSERT_SD_MAME ("sSD_tc
RTC_DriverInitCode |
A D

User Defined Stub Operation Calls

Stub operations are created for any operation call in the sequence diagram going from the
SUT to a test component if the following items are all true:

e areturn value (or a returned value for an out or in/out argument) is specified for
this operation

* thetag TestConductor: :RTC MsgInfo::RTCMonitor for the sequence
diagram message is set to false

* thetag TestConductor: :RTCInstInfo: :RTCMonitor for the To-sequence
diagram instance line is false

TestCondoctor needs the ability to determine and control the value returned by the
operation. On the other hand there might be calls to the same operation without a specified
return value or the operation is called by a test component on a test component: because of
this TestCondoctor has to generate a different body for the operation, but it must still be
possible to call the original operation.

To ensure this, TestCondoctor creates a copy of the original operation with the name
orginal followed by the operations name, having the same signature. In the
implementation body of this so called DefaultOperation the original function is called
non-virtually. For every occurrence of the operation where it should be stubbed, a new
operation is added to the test component with the same signature of the original operation.
This so called StubOperation returns the specified return value, out and in/out arguments.
The name of the stub operation is the concatenation of the name of the test case, the string
“ stub_”, the name of the original operation followed by a number to make it unique.

The body of the original operation is deleted completely and a new implementation is
generated this way: The operation does a call to a special TestCondoctor operation and
uses the OMString value returned by TestCondoctor in a switch statement to select which
operation should be called. If a stub operation has to be invoked TestCondoctor returns its
GUID, if the original operation has to be called TestCondoctor returns an empty string.

213

Stubbed Operation : show in TC_at_hw

General] Description Implementation l.t‘-‘uguments Helations] Tags] Properties

|void show(char® aksg)

o1 ji—:C-;-(-:E»(-;-(-é;(-:C-A—A—é;-(-:GA-A—pC-;-(-:E»(-;-(-:EA—i—A—A—:C—»(-:(-A-A-:GA—i—A—A—éA—:(-A—A—:&A—:E-A—*é****é*********é****é** ry
oz StubbedOperation gererated by TestConductor

a3

Cl-q :(-:(-f;(-fﬁ#fﬁfﬁ#fﬁfﬁ#fﬁfﬁ#fﬁ*f#f:(-*f#fﬁ*;(-#fﬁ*f#fﬁ*f#fﬁ*f#ff*f#fﬁ*f#fﬁ*f#fﬁf
os

06 OM3tring guid = RTC_ASHE("GUID d2de7od6-7106-453f-as73-7783£c788£2b") ;
07 if (guid == "GUID 92956f0c-2d431-4b80-9408-A001064de974™)

as S0 _te 0 _stub _show 1ialMsy) :

o9 OM RETURN WOID:

i0 3

11 else

12 if (guid == "GUID ecEl85e8-332f-4030-92al1-24ccdfdf1f4a™)

13 30 _te 0_stub_show 2 (aMsg)

14 OM_RETURN WOID:

50

16 original show(alsg);

17 OM_RETURN ¥WOID:

15

=
1| | »

Lucate| 0K | |

The actual values of formal parameters defined for the sequence diagram or sequence
diagram instance are propagated to the stub operation this way: If any parameter is used in
the return value or out or in/out arguments of the operation that has to be stubbed, then in
the body of the stub operation this parameter is exchanged with the value of the parameter.

RTC_StubBodyCode

Normally, if the user modifies stub operations in the model, then this information is lost if
the user updates a test case. The user can influence the code of the stub using the tag
RTC_StubBodyCode. To do this he has to add the stereotype <<RTC MsgInfo>> to the
sequence diagram message, this adds automatically the tag RTC StubBodyCode to the
message. The user can fill this tag with code which will be used as body of the stub
operation when the test case is updated. Important is that this code completely replaces the
body that would be generated by TestConductor automatically.

An important limitation is: only virtual operations can be stubbed. Since the SUT is
implemented, in the SUT code operations of other design classes are called. For instance,
a class A which is the SUT class may call a operation “£” of a class B. Now, in a given test
architecture, a new test component class BT is introduced that inherits from B in order to
be able to use an instance of class BT instead of an instance of class B directly. However,
the SUT code still calls the operation “£” of B, since the SUT code remains untouched.
But when “£” is a virtual operation, the virtual dispatching mechanism of UML ensures
that the most specialized variant of the operation is called, i.e., if class BT implements a
new version of the called operation “£”, then this function is called. This function can be
stubbed, since it is defined in the testing component BT. However, if the SUT calls a non-
virtual function, it cannot be stubbed since this operation is in general not defined in a
testing component.

If an operation is stubbed multiple times in the same test component in the same sequence
diagram instance, then for each occurrence an individual stub operation is generated.

214

If an operation is stubbed multiple times in the same test component in the same SUT in
different test cases respectively sequence diagram instances, then for each occurrence an
individual stub operation is generated.

Tip: In case TestConductor has not created stub operations for a sequence diagram
message, the at the beginning mentioned conditions are not fulfilled. To “inspire”
TestCondutor to create such stubbing functionality anyhow, the user can define
“*” as expected return value for the sequence diagram message followed by an
update on the test case. In some cases TestConductor will then create the
customizable stubbing functionality as shown in the above picture.

Clean TestComponent

Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of a test component at once.
To clean a test component select the test component und choose from the context menu the
item Clean TestComponent.

= j TestComponents

--h Defal Features
+-@3 ol Features in Mew Window
+- Drivel
+- B Oper: Add Mew 3
+= Ports) gegreh,
- Stubt Search inside. ..
= References. .,
- stubg
- 3l Create Unit
+- 3l
45 Super Change to 3
* TC_For it copfiguration Management »
+ TC_for_it
= g; TectContexke Implement Base Classes, .,
=9 TCon_Ca:
3 aenerate
+|-- L Links —
+- i, SUTs Sinbos
4 & Testt Foundtrip
B
=% TestC Edit Type Order...
+ “:...- al
+-%. al Assocate Image
+-® al
iy Delete Fram Madel
- al
+- ¥, al TestZormponenk
+- %, atgore oy =

Clean TestPackage

Driver and stub operations can be deleted manually, but TestConductor provides the
functionality to delete the automatically generated operations of all test components of a
TestPackage at once. To clean a test package select the test package und choose from the
context menu the item Clean TestPackage.

215

To regenerate the driver an stub operations select the test case or the test context or the test
package and choose from the context menu the item Update
TestCase/TestContext/TestPackage.

Deleting User Defined Stub Operation Calls

TestConductor uses user defined operation calls if the tags

TestBehavior::RTC MsgInfo::RTC StubBodyCode are not empty, even if the tags
are overwritten. To delete the user defined operation call and use the auto generated stub
operations from TestConductor, reset the tags to delete the content of the tag.

Black-Box Testing of External Files and Libraries

TestConductor comes with the C++ sample CppTestingExternalFiles. This project

contains the package PkgUseExternalFiles, where two files are defined. The declared
external file ExternalFile ArithmeticCPP consists of a source file
arithmetic.cpp and the corresponding header file arithmetic.h. The file
Externallib LogicLib consist of the library LogicLib. 1ib and a corresponding

header file LogicLib.h. Further information on how to define files can be found in the
Rhapsody User Guide.

- ﬁ PkolUseExternalFies
+-B Classes
+ Comments
+ I:l Camponents
23 ﬁ Files
|- B ExternalFile_arithmeticCPP
- E Functions
B dividefint argument_0,int argument_1)
B multiplyfint argument_0,int argument_15
B subtractiint argument_0,int argument_1%
B summatedint argument_0,int argument_1}
- @ Externallib_LogicLib
- E Functions
B landint a,int b
=)]
& 1ok a,int b
& Ixorfint a,int b

Open the feature dialog of a file, select the Properties tab and browse the overwritten
properties of ExternalFile ArithmeticCPP.

216

File : ExternalFile_ArithmeticCPP in PkgUseExternalFiles

General] D ezcription ‘Jarial:ules] Functions | Felations | Tage Froperties

Yiews Owerndden -

= CG
=l Class
FileMarne Externalarcfarithmetic
sefsExternal
= Operation
EnablelnMethodBroker
= CPP_CG
=l Class
Animate D

CG.Class.UseAsExternal is set to TRUE.

CG.Class.FileName determines the basename of the referenced external file. This
property defines ExternalFile ArithmeticCPP toreferto arithmetic.h in the
project's ExternalSrc-directory.

CPP_CG.Class.Animate is set to FALSE. Whatever the library or the external source
file contains Rhapsody animated code, the property has to be set to FALSE. Setting this
property to FALSE means, that the file, which will become in this example the SUT, will
not be animated. Furthermore, disabling the animation of the SUT means to perform a
black-box test.

In order to use external header and implementation in code-generation, component
UseExternalFiles defines the additional include-path ". . /. .", which refers to the
project's root-directory. The implementation of the external functions is made available to
code-generation by defining additional source
"../../ExternalSrc/arithmetic.cpp". In order to link the library the configuration
UseExternalFiles::Default defines under Libraries
“../../LogicLib/NotInstrumented/LogicLib.1ib”.

To use this example and the provided test cases in the test packages

TPkg ExternalFile ArithmeticCPP and TPkg Externallib LogicLib the user
has first to generate/build the LogicLib.Lib and the header file LogicLib.h. Browse
the package PkgLogicLib, set the containing configuration

LogicLib: :NotInstrumented active and build the configuration by using the
Generate/Make/Run button.

Test Packages

The example comes with pre-defined test architecture for the file
ExternalFile ArithmeticCPP. The test architecture was created as follows:

217

For testing external file ExternalFile ArithmeticCPP, select
ExternalFile ArithmeticCPP and choose Create TestArchitecture in the context
menu. A new test package TPkg ExternalFile ArithmeticCPP will be created

«TestContexts
TCon_ExternalFile_ArithmeticCPP File ExternalFile_ArithmeticCPP is the System Under Test.
wFilew
PkolseExternalFiles: ExternalFile_ArithmeticCPP
———
elUsages

In order to make test context
TPkg ExternalFile ArithmeticCPP::TCon ExternalFile ArithmeticCPP

compilable and linkable, the user has to modify code generation component
TPkg ExternalFile ArithmeticCPP::TPkg ExternalFile ArithmeticCPP C

omp:

1. enter"../../ExternalSrc/arithmetic.cpp" into entry Additional Sources in
the General tab.

2. extend the include path in entry Include Path to "$
(OMROOT) /. ./TestConductor, ../.."

Component : TPkg_ExternalFile_ArithmeticCPP_Comp in TPkg_ExternalFile_arithmeticcPP =] [X]

General lSu:Dpe] De&criptinn] Flelations] Tags] Properties

M ame: |TF'kg_E sternalFile_ArithreticCPP_Comp

Sterentype: | ﬂ E
Diirectory: |T Pkg_E=temalFile_ArithmeticCPP_Comp

Libraries: |

Additional Sources: |...-’...-"E sternalSrcdarthmetic. cpp

Standard Headers: |

Ll L |l

Include Path: [$(OMROOT)/./TestConductar,.. /..

Tvpe
" Library % Ezecutable © Other

anate] 0OK | |

The example comes with a pre-defined test architecture for the file
ExternalFile ArithmeticCPP and the library Externallib LogicLib. Also the
following sequence diagram test cases have already been defined:

218

¢TestContexts

TCon_ExternalFile_Arithme ExternalFila_Arit
ticCPP[O]: TCon_ExternalFil hmeticCPP
e_ArthmeticCPP

| 42=summate(argument_0=11 argument_1=31)

| A2=rnultiplylargument 0=6 argurment_1=7)

| 42=subtract{argument_1=53 argument_1=11)

| 42=divide(argument_0=96E argument_1=23]

| U=divide(argument_0=0 argument_1=42)

RN . SN SN . F——

To execute the test case SD_tc 0 select the test case in the Rhapsody browser and choose
from the context menu Update Test Case, Build Test Case, Execute Test Case. In the
TestConductor execution dialog click on the button Activate Test. TestConductor shows
that the test case SD_tc_ 0 passed. For further information select in the TestConductor
execution dialog the entry SD_tc_0 and click on the button Show as SD. The animated
sequence diagram displays the text execution result and states, that all return values
occurred as specified.

TCaon_ExternalFile_Arithme ExternalFila_Arit
ticCPP[0]: TCon_ExternalFil hmeticCFFP
g_ArithmeticCPP

| surmmatelargument_0=11 argurment_1=31%1 Chech of return value passed.
| multiply{argument_0=5 argument_1=7): Check Dfr‘eturn value passed.
i subtract{argurment 0=53 argurment 1=11): Checjf return value passed.

: divide(argument_0=966 argument_1=23); Check of return value passed.
! dividefargurnent_0=0 argurent 1=42): Check of return value passed.

| g
| |

Now execute the test case SD_tc 0 in the test context TCon Externallib LogicLib.
The test will fail and the Show As SD sequence diagram will state, that the check of the
return value failed.

219

TCon_Externa Externallib_L
ILib_LogicLib[ogicLib
O0]:TCaon_Exte
| lAnd{a=10 b=42}: Check of retumn valueﬂassed.
! [Or(a=0b=13): Check of return value psﬁ;ed.
| [#or(a=1,b=13): Check of return value pﬁsed.
: IMot(a=0): Check of return value failed.

| o

Open the test scenario SDTestScenario 0 oftest case SD_tc 0 in the test context
TCon_ ExternalLib LogicLib.

glestContexts

TCon_Externa Externallib_L
ILib_LogicLib| ogicLib
O0]:TCon_Exte

| 1=l4nd(a=10 b=42)

¥

! 1=10r{a=0 b=13)

|

| D=lxor(a=1 b=13)
|

| 0=INot{z=0)

W, A B

The expected value in the expression “0=1Not (a=0) ” is wrong. The correct return value
has to be “1=1Not (a=0) ”. Correct the test scenario and re-run the test. It will pass.

Support for interfacing Files in C using

<<ClInterfaceFile>> Stereotype

Rhapsody predefines a stereotype <<ClnterfaceFile>> in package Predefined TypesC.
Applying this stereotype to a file causes the code generation to just generate the
declarations of the functions without implementing them. For <<ClnterfaceFile>>
afile, all functions are declared as afile $op, where $op is the basic name of the
function. In order to use a <<ClnterfaceFile>> file interface, a file can refer to the
interface using a generalization. The inheriting file should have property

C CG.Operation.PublicName setto “<afile> $op”, where <afile> is the
name of the <<CinterfaceFile>>. Furthermore, <<ClnterfaceFile>> afile as well as the
inheriting file should override

C _CG.Operation.UseProtectedNameAndPublicNameInFile by checking
the property. Now, the inheriting file defines the implementation of the functions declared
by the <<ClnterfaceFile>> afile. Other files that are desired to use these
implementations only have to refer to the <<ClnterfaceFile>>. This ways, a notion of

220

interfaces can be used with files in C, declaration and implementation of functionality can
be handled separately in the model.

TestConductor offers specific support for <<ClntefaceFile>> interfaces, by stubbing the
implementations if a file to be tested as SUT refers to <<ClnterfaceFile>> interfaces.

Using Serialize/Unserialize Functions for User
Defined Types

Rhapsody can animate (display) the values of simple types and one-dimensional arrays.
However, if you want to animate a more complex type, the type must be converted to a
string (char *) for Rhapsody to display it. This can be done generally in two different
ways, either by using auto-generated serialization/unserialization functions or by using
manually defined serialization/unserialization functions.

Using auto generated serialization /unserialization functions

For enum types and structure types that are explicitly defined in the model, Rhapsody
provides the possibility to use automatically generated serialization/unserialization
functions in order to display values of these types e.g. in animated sequence diagrams. In
order to use the auto generated serialization/unserialization functions for a specific type
that is defined in the model, the property “<Lang>.Type.GenerateSerializationFunctions”
must be set to “SerializationAndUnserialization”:

=- Paékages

Type : person in Default

=-F5 Default
B Classes General | Description | Attibutes | Relations | Tags | Properties I—
\ Events
= Types iew Overidden =
& farbe =l crp_CG
=4 persan _
== Atributes Type
= name GenerateSerializationFunctions | SerializationandUnser ialization
= alter

If this property is set correctly, for arguments with enum type one can use the literals of
the enum definition in the test scenarios, and for arguments with structure type one can
specify each attribute defined in the structure type. The following test scenario shows two
message “f” and “g” that both have two arguments, one of enum type and one of a
structure type:

TCon_Aitsi TCon AtsTC
A, _for_itsB_of
ATC for_itsB

ficolor = red, person ={ name = Peter , age =33 1)

|
|
Id

|

|
| gicolor = red, person = { name = Peter , age =33) |
| |
I

221

Using manually defined serialization /unserialization functions

Besides using the auto generated serialization/unserialization functions of Rhapsody, one
can also manually define serialization/unserialization functions. These functions are global
instrumentation functions, that takes one argument of the type you want to display, and
returns a char *. Further information can be found in the chapter Guidelines for Writing
Serialization Functions of the Rhapsody User Guide. The usage of serialization functions
for Testing is demonstrated by the sample model
“Samples/CppSamples/TestConductor/CppListUsage”. Please note that serialization
functions can only be used for testing purposes if the type that should be serialized is
selected directly as an “existing type” in Rhapsody. If only the type signature is used to
specify the type of an argument type or return type, serialization functions cannot be used
for testing.

In case of non fault tolerant programming of these (un-)serialize function the
application/model may probably work during normal operation, but can crash, if the user
executes a test case on the same model. The following example shows a Sting32 type.

Type : 5tring32 in TypesPkg

General] Description Details l Helatinns] Tags] F'r-:uperties]
B azic bype: ||:har ﬂ _]
Multiplicity: ~ [32 | Odered
[Constant

[Refererce

Locate | 0K | I |

The user defined the following serialize function:

Function : serializeString32 in TypesPkg

General] Description Implementation l.ﬁ.rguments] Helatiu:uns] Tagz] F'ru:uperties]

|n::harx zenalizeString32[const Sting32 aStning)

01 char?* str = (char *Jmwalloc(sizeof (char) *33);
02 strepy | str, a3tring):

o3

04 return str;

a5

And connected it correctly to the corresponding property

222

Type : 5tring32 in TypesPkg

General] Descriptiun] Details] Helatinns] Tage Froperties l

Yiew Common =
S
= Wk -

AnimSerislizeOperation | serializeString32

animUnserializeCperation

During normal operation everything will work properly. But during execution of a test
case on the unchanged model the execution will crash.

Microsoft Visual C++ Debug Library

@ Debug Error!

Program: ... dellei TCU TCon_Telephone_01DefaultConfigh TCon_Telephone_0.exe

DAMAGE: after Maormal block (#50977) at 0x00521395.

(Press Retry to debug the application)

abbrechen | Wiederbolen Ignorieren

The reason for the crash is the serialization function for String32, it causes a crash if it is
called with a not initialized string. If TestConductor registers as an observer the
framework notifies TestConductor about operation calls. To do this the framework
serializes the arguments of the constructor (== conversion to string).

If the serialize function for String32 is modified this way the application will not crash:

Function : serializeString32 in TypesPkg

General] Description Implementation].ﬁ.rguments] Helatiu:uns] Tags] F'ru:uperties]

]u:har“ zenalizeSting32[const Sting32 aStrng]

01 char?* str = (char *Jmwalloc(sizeof (char) *33);
02 for (int i = 0; i < 32; i++)

o3 str[i] = aString[i]:

o4

05 =tr[32] = '40';

06 return str;

223

Failure Analysis

TestConductor detects and reports a failure if a message contained in the message set of a
sequence diagram does not appear in the specified order or if a RTC ASSERT isn’t
fulfilled during test execution. A message from the message set is specified by its name,
the value(s) of its argument(s), the names of sending and receiving objects.

Failure analysis is an important but sometimes difficult task. This is due to the fact that
industrial-sized models show very complex behavior, with many messages flowing during
test execution.

All possible failures monitored by TestConductor can be caused:

1. By errors in the model — the computed model behavior does not meet requirements
specified by a sequence diagram

2. By inconsistencies in the test configuration or/and in the requirements

In case of using sequence diagrams for test definitions, the task of model debugging is
simplified by using TestConductor’s graphical failure reports. You can use a combination
of diverse Rhapsody analysis capabilities (for example, state chart animation, sequence
diagram animation, and sequence diagram comparison) with TestConductor to show test
executions as sequence diagrams. The colors and percentage information in the Execute
Test dialog are useful indicators in determining where the failure occurred.

Remember that during model execution TestConductor ignores all messages which are not
specified in the sequence diagram instances of the executed test. This implies that
TestConductor meets failure in the following two cases:

1. The real order of message actions during model execution does not correspond to
specifications in sequence diagram instances.

2. The real argument values of messages during model execution do not correspond to
those specified in sequence diagram instances.

During test compilation, TestConductor translates every sequence diagram instance into
internal sequence(s) of message actions specified in the sequence diagram instance. As
you activate a test, TestConductor starts the model execution and creates the first iteration
copies of sequence diagram instances without specified ordered predecessors as the
original run-time instances. During test execution, TestConductor checks the activation
condition of each created run-time instance until it gets value TRUE (that is a run-time
instance becomes active). After that, TestConductor checks every messages appearing in
the model execution. For every currently active run-time instances from the Execute Test
dialog, it compares the following:

1. Whether the current message belongs to the message set of the corresponding
sequence diagram.

224

2. Whether all message actions preceding the current message in the corresponding run-
time instance have already occurred.

If the first condition does not hold, TestConductor ignores the current message. If both
conditions hold, TestConductor marks the current message as green. If only the first
condition is fulfilled — one or more actions preceding current one in the corresponding
run-time instance have not yet appeared in the model execution — TestConductor creates a
red message, reports failure and stops to traverse the run-time instance with erroneous
message action. After that it continues to generate run-time instances with respect to the
specified execution mode, check activation conditions and new message actions.

Failure Reporting

TestConductor draws a green horizontal message arrow for operation calls that have been
monitored. Events that have been monitored in-order are drawn as slanted messages as in
sequence diagram animation. The starting point of the slanted message is where the event
has been sent. The end point refers to the point where this event must be consumed
according to the original sequence diagram specification.

Note: In our green, blue, red approach one could consider the dashed line as half-green
(event has been sent) and half-blue (consumption not yet monitored).

Following classes of errors can be detected by TestConductor:
1. Sending out of order

2. Event Sending - Parameter values do not match

3. Event Sending - Parameter values not in range

4. Consumption out of order

5. Event Consumption - Parameter values do not match

6. Event Consumption - Parameter values not in range

7. Operation Call out of order

8. Operation Call - In Parameter values do not match

9. Operation Call - In Parameter values not in range

10. Operation Call returned - Return value does not match

11. Operation Call returned - Out Parameter values do not match
12. Operation Call returned - Out Parameter values not in range
13. DataFlow Message - Value does not match

14. DataFlow Message - Value not in range

15. DataFlow Message out of order

225

16. Assertion failed

TestConductor draws a red horizontal message to visualize a failure. The red arrow refers
to a point where a message was monitored out-of-order or where parameter values did not
match. The red message is labeled with a text (M() represents the failed message):

* M():Sending out of order

* M():Event Sending - Parameter values do not match

* MJ():Event Sending - Parameter values not in range

* M():Consumption out of order

* M():Event Consumption - Parameter values do not match

* M():Event Consumption - Parameter values not in range

* M():Operation Call out of order

* M():Operation Call - In Parameter values do not match

* M():Operation Call - In Parameter values not in range

* M():Operation Call returned - Return value does not match

* MJ():Operation Call returned - Out Parameter values do not match
* M():Operation Call returned - Out Parameter values not in range
* M():DataFlow Message - Value does not match

* M():DataFlow Message - Value not in range

* M():DataFlow Message out of order

* M():Assertion <SD instance X: message Y> failed

TestConductor draws blue messages for messages that have not yet monitored, neither
sending nor consumption of events. Such a drawn sequence diagram contains the original
sequence diagram specification used for the test. All green and blue messages represent
the messages of the original sequence diagram. Green and blue messages, together with
the red arrow make failure analysis much easier. If the red message is erased, then the
drawn sequence diagram can be used to reproduce the same failure.

Note: Red messages can not be erased automatically from a failure sequence diagram used
in a new test. Workaround is to erase it manually if such a sequence diagram shall
be used in a test. Following samples explain the failure cases.

Event sending out-of-order

226

PEX[0}-> PEX[0}-> PEX[0}-> PBX[0}>

itsTelephone[0]: itsLine[0]:Line itsCallRouter. itsConnection[0]:
/evOfiHook()
o g
7 i T
e giqltganateCallo
N 7 T— _
; OpenConnectiong
7
? OpenConnection
o
? evDialTone()
:,’ _~"pOriginateCallg
7 o ——
7 i Bl e
/// // B
PBX[0]-= PBEX[D]-> PBX[0]-> PEX[0}->
itsTelephone[0]: itsLine[0]: Line itsCallRouter. itsConnection[0]:
“é:0fHook
evOriginateCall
=]
/// OpenConnection)
i
; DpenConnection
s evOriginateCall(): Sending out of orde
?/ evDialTane()
? evOriginateCall()
o I S
g I

In this example, according to the specification: TestConductor must

Monitor the self message OpenConnection ()
Monitor the operation call OpenConnection ()
Monitor the sending of evDialTone ()
Monitor the sending of evOriginateCall ()

bl o

TestConductor sees, sending of event evOriginateCall () occurs before the sending of
evDialTone (). Thus TestConductor gives the warning “Sending out of order”.

Event sending in-order, but parameter values do not match

227

AN

w Ot Hooko)
pwOniginate Cally
Dipeen Connection)

pen Connection
b OrigirateCall)

e DialTone()

Dight Diaded(Digh = 1)
igit Dialed(Digh = 2)

/

l|j

='|j

v Digit Dialedi Digit = 1)

AT

Ot Hool

|

ew Drigingte Call)
DpenConnection()

Open Conmection
v Dwiginate Calk()

e Dial Tone()

B ™™

BUOUOIOIDOIAIINNR

h\\\\\\\f[

Digit Dialed(Digg#1)
Digit Dealed(Digig=2)
g Digit Dialed(Digge 17 Bvent zent but |mot vet consurmad

v Digin Dialed(Digg32): Evert Sending - Parameter valued do rot matoh
ew Digit Dialedi Digas 1)

In this example, according to the specification, TestConductor must monitor the event
evDigitDialed (Digit = 1), but TestConductor is seeing evDigitDialed (Digit
= 2). Thus TestConductor reports a failure “Event Sending -Parameters values
do not match”

228

Event sending in-order, but parameter values not in range

PBRX[D])-» PBX[D)-> PBX[D]-» PEX[D)->
itsTelephone[D]: itsLine[0]:Line itsCallRouter: its Connection [0]:
Telephone CallRouter Connection
ey OffHook()

ev Orginate Call)

Dpen Connection()

a—ﬁnlan Connection()

v Oniginate Call()
ew DialTore()

w Digit Dialed(Dig
v Digit Dialed(Digh = 2)
\w Digit Dialed; Digit
e Digit Dialed(Di

PEX[O> PEX[O]> PEX[O]> PEX[O]->

itsTelephone[0]: || itsLine[0]:Line itsCallRouter:| |itsConnection[0]:
I I I T

OO

n
—_
S

RN

DpenConnection

evOriginateCall()
evDialTone()

[Ay

DigitDialed(Digit31)
DigitDialed(Digit532)
evDigitDialed(Digit51): Event Sending Parameter values| not in range
evDigitDialed(Digits [3..5])
evDigitDialed(Digitz [3..5])

\ @Tdmigiw [3.5])

In this example, according to the specification, TestConductor must monitor the event
evDigitDialed (Digit = 1), but TestConductor is seeing evDigitDialed (Digit
= [3..5]). Thus TestConductor reports a failure “Event Sending - Parameters
values not in range”.

ANNNRRRARRNNERTAN AR

229

Event consumption out-of-order

FBX[D]-> PBX[D]-=itsLine[0]: FBX[0]-> FBX[D]->
itsTelephone[d]: Line itsCallRouter: itsConnection[d]:
Telephone CallRouter Connection

7 eviffHo okl
‘;\jLUDriginateCallo
/]
? OpenConnection))
-'"/f DpenCnnnec‘tion(}.
/ ewdriginateCalld)
ﬁ ewDialTone(]
Z < P,
/. "
FBX[O]-> PBX[0]-= PBX[O]-> FBX[D)->
itsTelephone[0]: itsLine[d]:Line itsCallRouter: itsConnection[0]:
Telephone CallRouter Connection
wOftHo ok
vOriginateCall))
OpenConnection()
;plenconnec'tion
evOriginateCall(: Event sent but not yet consumed
mwDial e(): Ewent sent buf not yet consumedh‘-"‘“—u

AN

/

i g;:aﬁ'tﬁﬂl@:\

Consumption out

arder

-

-H-"‘H—.‘

In this example, according to the specification, TestConductor must monitor

kv -

The operation call OpenConnection ()
The sending of evOriginateCall ()
The sending of evDialTone ()
The consumption of evDialTone ()

The consumption of evOriginateCall ()

TestConductor sees consumption of evOriginateCall () before the consumption of
evDialTone (). Thus TestConductor gives the warning “Consumption out of
order”.

230

Event consumption in-order, but parameter values do not match

PBX[O]-= PBX[0}-= PBX[O]-> PBX[0]-=
itsTelaphone[0]: itsLina[0]:Line iteCallRouter: itsConnection[0]:
Telephone CallRoutar Connection

vDigithialediDiglt= 1)

o gimLa_lEd(Digi=2)
\\ T
evDigithialed(Digit= 1)

\x;\‘%

/
-44 \H““
% EuDi;i\tW(DigH:E‘)
/. \\ Ty
’4 e evDigitCialed(Digit= 1)
/.
7 N
?’ evligitCrialediDigi
/]
//f 3
%
4 D_iallingDoneO
PBXO]-> PBX[D]-> PBX[D]-* PBRX[D]-»
itsTelephone[0]: itsline[0]:Line tzCallRouter: itsConnection[0]:
Telephone CallRouter Connection
1)
=2)

kv Digit Dialed(Digit=1)
B Brigit Dialed(Digit=2)
-

e Digit Dialed(Digit=17: Bwant sent but not wet consumed

=27 Bwent sent but not wet consumed
. Bwent Consynption - Parameter walues do not match

ialing Donel)

SRR

et Dl Tint=1"%

Figure 1: SD with message “Event Consumption — Parameter value do not match”

In this example, according to the specification, TestConductor must monitor

The sending of evDigitDialed (Digit=1)
The sending of evDigitDialed (Digit=2)
The consumption of evDigitDialed (Digit=2)
The consumption of evDigitDialed (Digit=1)

L=

231

TestConductor sees, event consumption of evDigitDialed () came in-order, but the
value of the parameter does not match. Thus TestConductor gives the warning “Event
Consumption - Parameter values do not match”.

Event consumption in-order, but parameter values not in range

PEX[0]-= PEK[0]-= PBX[0]-= PBR[0]-=
itsTelephone[0]: | itsLine[0]:Line itsCallRouter;| |iteConnection[0]:
Telenhnha | CallRoutar Connactinn
vDigtDialediDidit=1)
{&v\ i 'aled(Dijit:?}
é \ evDigitDialed(Digil=")
7 i
//; evDigitBialed(Digif=)
\\.-
Z ~
g \ E\PigitDi&lle(DigH=[IZI__1])
5 SN T
//ff evDigitDialet®igh = [2..3)
7/]
Z =
;’: %IingDnneO
PEX]-* PEX[O]-» PEXO]-» FEXID]->
itsTelephone[0]: | itsline[D]:Line sCallRouter:| |itsConnection[D]:
Telephone CallRouter Connection

Digit Dialedy Digit=2)
b Digit Dialed(Digit=™)
v Digit Dialed(Dig'i")
x\

\\:u Digit Dialed(Digitr [0..1]): Bvent seft but not yet consumed

itF [2..3]): Event seft but not wet consumed
=L). Event Consymption - Parameter waluas nat in rAnge

kﬁ%}“?;:

Dialing Done()

Mext Digit{ Digit=1)

‘i\\\\\\\\\\\\\\\\\\\\\\\\\[\

In this example, according to the specification, TestConductor must monitor

1. The sending of evDigitDialed (Digit=[0..1])

232

1
2..3])
0..11

3. The consumption of evDigitDialed (D1g1t=

2. The sending of evDigitDialed (Digit=[2..3
[
4. The consumption of evDigitDialed (Digit=[

TestConductor sees, event consumption of evDigitDialed () came in-order, but the
values in the event consumption does not fall in range specified. Thus TestConductor
gives the warning “Event Consumption - Parameter values not in range”.

Operation call out-of-order

233

PBH[D]-> PBX[O]-* PBX[O]-* PBE[D]-*
itsTelephone[0]: itsline[0]:Line isCallRouter: itsConnection 0]

Telephone CallRouter Connection
=
e OffHook()
-_._______—]
—3

gw Originate Calll)

—

DpenConnection()

ev Orginate Call)

ﬁi‘é’fr@cn,uectinn

y H‘LL-"‘M)

RS b bt bl e b

OffHook()

gv Orginate Call()

R‘ﬁ-ﬁ.‘i

Dpen Connection|]

]

Elpen[:-:-nnectiani . Operation call ot of onder

v Originate Call()

Open ection

ev DialTone(] \

B N

In this example, according to the specification above, TestConductor must monitor

1. The self message OpenConnection ()
2. The sending of evOriginateCall ()
3. The operation call openConnection ()

Operation call OpenConnection () from Line to CallRouter should occur after
sending of the event evOriginateCall () . Thus TestConductor reports the failure
“Operation Call out of Order”.

234

Operation call in-order, but parameter values do not match

EpenCnnned ionl_:%
v Originate Call()

ey DialTone(]

RN
\

wDigit Dialed(Digh = 1)
 Digit Dialed(Digh = 7)

ev Digit Dialed(Digit F 13

ew Digit diDigit F 2

w Digit Dialed(Digit = 1)

\ ialing Done)

\\ et Digit(Digit = 2)

5\\\\\\\\\\\\\\\\\\\\\\\;

ialinaDonel
H\M\\:ﬁfﬂigﬂ Dialed(Digit$1)
@MW not wet consumed
\ Dialing Done)
= ext Digit(Digit=1): Operation Call - In Parameter values do not match

et Digit(Digit=2)

=
Digling Donel)

et Digit(Digit=2)

Figure 2: SD with message “Operation call — In Parameter value do not match”

In this example, according to the specification, TestConductor

1. Should monitor the operation call DialingDone ()

235

2. Must monitor the operation call NextDigit (Digit=2)

TestConductor sees that operation call NextDigit (Digit=1) instead of operation call
NextDigit (Digit=2). Here the operation call has come in order but the parameter
value is incorrect. Thus TestConductor gives the warning “Operation Call:In
Parameter values do not match”.

Operation call in-order, but parameter values not in range

;/;.. penConnection
/ B Originate Call()
/ ev DialTone(] -ﬁh_‘—‘(__n
% T
/,,. /
ot
o
7
7w Digit Dialed(Digit = 1)
Iy ¥ Dig ialed(Dig'J =2)

B Digit Dialed(Digit £ 1)
M@Z L 2y

e Oigit Dialed(Digit £ 1)

?\\‘\\\\\\\\\\\\\\\\\\\\\f‘?\

& Digit Dialed(O
[ialing Done()
ext Digit(Digit = 2)
ialinaDoner
0= FBX[Q]-= FPEX[Q]-= FEX[0]->
hone[d]: itsLine[0]:Line itsC allRouter: itsConnection[0]:

evDigilialed(Digits2)

il

evDigitDialed(DigitF

-

)

evDigitDialed(Digi i-Ewent sent but not yet consumed

DialingDone)

NextDigit{Digit=1): Operation Call - In Parameter values not in range

\ :_e—lsdmgit(bigih [2.4n

236

In this example, according to the specification, TestConductor

1. Should monitor the operation call DialingDone ()
2. Must monitor the operation call NextDigit (Digit=2)

TestConductor expects operation call NextDigit (Digit=[3..4]) as specified in the
tolerance in the test definition, but sees operation call NextDigit (Digit=2) which is
out of the range. Here the operation call has come in order but the parameter value is
incorrect. Thus TestConductor gives the warning “Operation Call:In Parameter
values not in range”.

Operation call returned - Return value does not match

A
|

-~
=
=

"B=op_intta=1,b=2,c=In:9:0ut3)

—
L=

“H=op_longia=1,b=2 c=In9;0ut3)

ANNNNENNNNNNY

p_inta=" b= o=9)

H=op_intla=1.b=2,c=3) Operation Call returned - Return value does not mateh, Expected walues are: S=op_intla=1.b:

p_long(a=",b=",c=9)

p_double{a=" b="¢=") %

Here TestConductor expects a return value of 5 as of the specification but sees a 4. Thus
TestConductor gives the warning message “4=op int (a=1,b=2,c=3) Operation
Call returned - Return value does not match. Expected values are:
S5=op_int(a=1,b=2,c=3)"

237

Operation call returned - Out Parameter values do not match

-
=

M=op intffa=3 b=2c=In90utI

-
=

g=op_longla=1,b=2, c=In90ut3)

ANNRNTANNNNNG

S

pp_int(@=" b=" c=9)

S
v

B=op_int(a=1b=2 e=3) Operation Call retumed - Out Parameter walues do not match. Bxpected values are: 4=op_int(a=3 b=2 o=3)

bp_long(z=" b="c=0)

=

pp_double(a=" b="0=")

B e b B3

Figure 3: SD with message “Operation call returned — Out Parameter value do not match”

Here TestConductor expects a value of 3 as of the specification but sees 1. Thus
TestConductor gives the warning message “4=op int (a=1,b=2,c=3) Operation
Call returned - Out Parameter values do not match. Expected wvalues
are: 4=op_int(a=3,b=2,c=3)"

238

Operation call returned - Out Parameter values not in range

A
[

=

W=op_intfa=[3.4], b=2 ¢c=In3;0ut3)

]

=]

4=op_long(a=1, b= 2, c= Ing:0ut3)

ANNRNTANNNNNGH

A
I

=

p_int(a=" b=" c=0)

)

A=op_int(@=1,b=2,0=3) Operation Call retumed - Out Parameter values not in range. Expected values are: 4=op_int(a= [3..4].b=2,0=3)

_long(a=" b=" o=0)

S

AN ANANNNRNNANARNNNNRY

p_doubleta=" b=" c=")

Here TestConductor expects the value in the range of [3. .4] as of the specification but

sees 1. Thus TestConductor gives the warning message “4=op int (a=1,b=2, c=3)
Operation Call returned - Out Parameter values not in range.

Expected values are: 4=op int(a= [3..4],b=2,c=3)"

DataFlow Message - Value does not match

TCon_clazs 0.tz TCon_class 0.tz TCon_claz=s 0.tz

Clazz_0O.class 0 TC_at x of clas TC_at v of clas

8 TC at x of_ s OTC at v of_
class [rlasgz 0

TestConductor expects dataflow ‘y=8’ but actually observed ‘y=7".

239

DataFlow Message - Value not in range

TCon_clazs 0.tz
Clazz (:class 0

TCon_class 0.tz
TC_at x of claz
& TC_at x of_

TCon_class 0.tz
TC_at v _of clas
s TC at y of_

b

TestConductor expects y to be within range [8..10] but actually observed ‘y=7", i.e.
outside the expected range.

DataFlow Message out of order

TCon_clazs 0.tz TCon_clazs 0.tz TCon_claz=s 0.tz TCon_claz=s 0.tz
Clagz _0O.clazs 0 TC_at_x_of claz TC_at_y_of_clas TC_at_z of clas
= TC at x of_ s TC at v of_ s 0TC at z of_

e

TestConductor expects dataflow order ‘z=6’ before ‘y=6’ but avtually observed ‘y=6’
before ‘z=6’.

240

Assertion failed

12l
TCan Adts A TCan AltsTC
A for itsB:TC f
or_itsB
« T=f{=0)
TCon Adits A TCon AitsTC
A o tsBTC f
or_itsB
4 f{i=5). Assertion <50 tc 'message 0> falled,
L‘ fli=5) Operation Call did nat retum yet,

When using test components to call operation from a SUT, TestConductor can observe
return values from this operation via an assert marco. TestConductor automatically
generates the RTC_ASSERT SD macro in the driver operation of the test component:

241

int osc_ret;

int osc _arg 1 = 5;

=
// Driver Call Code:

=
osc_ret = itsA->f(osc_arg 1);

RTC ASSERT _SD("SD_tc 0", "message 0",osc ret==7);

In this test scenario TestConductor expects a return value of 7 when calling f (I=5)
on the SUT, but the actual returned value is different. Thus,
TestConductor gives the warning message “Assertion <SD tc 0O:message 0>“.
The second message “f(i=5) Operation Call did not return yet.”
Occurs, because TestConductor interrupts the execution after detecting a failing assertion.

242

Using TestConductor from
Eclipse

As an alternative to the standalone Rhapsody application, Rhapsody can also be used
directly from Eclipse (Rhapsody platform integration with Eclipse, see “Integrating
Rational Rhapsody and Eclipse” in the Rhapsody online documentation in the IBM
knowledge center). Also TestConductor can be used directly from Eclipse when using
Rhapsody platform integration with Eclipse; TestConductor does not support Rhapsody
workflow integration with Eclipse. In general, all TestConductor functionality can be used
when working with Eclipse. Similar to the standalone Rhapsody application, almost all
TestConductor functionality is available in context menus of Rhapsody elements, and this
holds also when working from Eclipse as can be seen in the following picture:

& Rhapsody Debug - Eclipse SDK

File Edit Mavigate Search Project Run Code Generator Tools Window Help

: 5~ o B HOEBE -0 Q- G s
i | Model Browser &2 & = O
Features...
Entire Mode| Wiew T Options =

1 Packages Add Mew 3
3 Profiles
(1 Settings Cut
=-Ld TestPackages Capy CrHC

=% TPkg_CashRegistar
[Components
j TestComponents

=5 TestContexts Delete from Model Del
=9 TCon_CashRegister ~ Change to y
'S Lirks Refactor C
o SUTs
id Test Context Diagr Mavigate ’
=-#, TestCases

LW Code tc 00 Populate Flowchart
% SD_tc_0() Lacate in Code Ctr M+
‘ TestComponentln
%y TestConfiguration:
[JavaStop\watch (ROY

Edit Test Case

Debug &2 == ariables
% 2 Roundtrip

hn
e
Edit TestCase SDInstances
Update TestCasze

Build TestCase

Execute TestCase

Rational Rhapsody Gatewayhy2pen

243

However, there are some differences that needs to be considered when using
TestConductor from Eclipse:

In contrast to executing TestConductor from the standalone Rhapsody
application, the test execution windows of TestConductor are not always in
front of the Eclipse main window. Selecting the Eclipse main window may
hide the TestConductor test execution windows.

In Eclipse, when creating a new test architecture, TestConductor automatically
creates a new Eclipse configuration instead of a normal Rhapsody
configuration. Additionally, TestConductor automatically launches the Eclipse
New Project Wizard that can be used to create a new Eclipse project that is
connected to the created Eclipse configuration.

TestConductor does not support Rhapsody workflow integration with Eclipse.

TestConductor does not support computation of code coverage when using
Rhapsody platform integration with Eclipse.

244

Using TestConductor from
Rational Quality Manager

TestConductor test cases can be referenced and executed from Rational Quality Manager.
A detailed description how to integrate Rational Quality Manager and TestConductor can
be found

e In the document “RQMTestConductorAdapter HowTo.pdf” in
<Rhapsody installation>/Doc/pdfbooks.

245

TestConductor Rhapsody

Plugins

TestConductor installs some Rhapsody plugins with additional functionality. The plugins
are integrated in the TestConductor Testing Profile, this means the plugins are available for
Rhapsody projects containing the Testing Profile.

TestConductor Merge Coverage Reports Plugin

The plugin offers the functionality to merge several model coverage reports into one
combined report and to merge several code coverage reports into one combined report.

Note: The plugin supports only merging of model or code coverage reports which have
been created with Rhapsody 8.0.3 or higher. Merging of reports generated with previous
releases of Rhapsody is not supported.

Merging model coverage reports

This function can be invoked using the menu helper 'Merge Model Coverage Reports'. The
helper is available on TestPackages and supports multi selection. After invocation, the
helper collects all model coverage reports inside the selected TestPackage(s) and merges
them into one combined model coverage report which is added to the model. The
combined report contains a list of the merged reports.

If one TestPackage is selected, the combined report is added to this TestPackage. If
multiple TestPackages are selected the combined report is added to the joint parent
TestPackage of the selected TestPackages (if exist) or to a TestPackage
'MergeModelCoverageResults if the joint parent of the selected TestPackages is the project
itself.

-5 InterfacesPkg

-f 7 PredefinedTypes (REF)

-5 PredefinedTypesCpp (REF)

EI RequirernentsPkg

-5 Tuterial_Prerequisits

- Profiles

I'_—'I---E_} TestPackages

=% MergeModelCoverageResult

EI.Q ModelCoverageResults
MaodelCoverageResult_merg

[:I Components

{E-w Events

(E- Objects

#-Cd TestPackages
IS Y TPkg_ProductDatabase .

m

(|

1

246

Merging code coverage reports

This function can be invoked using the menu helper 'Merge Code Coverage Reports'. The
helper is available on TestPackages and on CodeCoverageResults and supports multi
selection. After invocation, the helper collects all code coverage reports inside the selected
TestPackage(s) or the selected CodeCoverageResults and merges them into one combined
code coverage report which is added to the model.

If one TestPackage is selected, the combined report is added to this TestPackage. If
multiple TestPackages or CodeCoverageResults are selected the combined report is added
to the joint parent TestPackage of the selected elements (if exist) or to a TestPackage
'MergeCodeCoverageResults if the joint parent of the selected elements is the project.

Note: Merging of code coverage reports for one source code file is supported only if the
different incarnations of this source code file are the same. If for example operations have
been added or removed or if statecharts have been modified between the generation of the
code coverage reports to be merged, then the combined code coverage report will be
wrong (and the report contains a warning).

T D ESL A UTILERL LDy rdrms S

EI---“'_;' TestZases

=% Code_tc_0()

EIII{‘JI CodeCoverageResults
BTN CodeCoverage.himl
-ﬂ ModelCoverageResults
l,«i’ TestResults

=% Code_tc 1()

EIII[', CodeCoverageResults
=i
.ﬂ ModelCoverag Features...
[¢ TestResults
=% FC_te 00
EIII[‘JI CodeCoverage Copy

Cut

i ‘E CodeCover Delete from Model
.Q MedelCoverag
(&} name Check Model

[+ 54 TestResults

I':'l---"-._,- SD_tc 00 Spell Check
EIII[‘, CodeCoverage GGenerate Code

E 1@ CodeCove

- - Roundtrip

42+ Dependencies

-4 ModelCoverag Merge Code Coverage Reports
[#-Eyg SDInstances

---*'5"' TestResults E

[#-Ey TestScenarios

(ol T O N———

Merging requirement coverage reports

This function can be invoked using the menu helper 'Merge Requirement Coverage
Reports'. The helper is available on TestPackages and on RequirementCoverageResults
and supports multi selection. After invocation the helper collects all requirement coverage
reports inside the selected TestPackage(s) or the selected RequirementCoverageResults

247

and merges them into one combined requirement coverage report which is added to the
model.

If one TestPackage is selected, the combined report is added to this TestPackage. If
multiple TestPackages or RequirementCoverageResults are selected the combined report is
added to the joint parent TestPackage of the selected elements (if exists) or to a
TestPackage '"MergeRequirementCoverageResult' if the joint parent of the selected
elements is the project itself.

= ; % TCon_defect_lowering_Architecture
+[£5 Dependencies
-4 RequirementCoverageResults
: 4} TCon_defect_lowering_Architecture_2015 09 11 17 01_28

+-[(¥ Fullies
- B Tags
+j TestComponents
—3) TestContexts

= 3) TCon_defect_lowering
(= Attributes

-2 Comments
-2+ Dependencies
-E* DriverOperations
i Links
: g MedelCoverageResults
~[= Operations

F- - - -

+

RequirementCoverageResults
2R 4 TCon_defe 2

D)

#-(2) Statechart Features...
]
+% -?—L:;—z Add New 3
+i‘ﬂ Test Context Diz
=% TestCases Cut Strg+X
5%, ATG_TestCa Copy Ctrl+C
+-[2s Depende _ L
+§ Modelc, Lost
+,q; Requirer Delete from Model Del
+Ef 5DInstan Set Stereotype 3
-, TestOhbje
+V' TestRe:L Changete i’
+‘i TestScen Refactor]
5% ATG TestCa _
+[£.5 Depends MNavigate »
+-8) ModelCe ,
- Requirer Merge Requirement Coverage Reports
+ "o S0Instan Apps 3
+El TestObjectrves

Note: Requirement coverage reports can only be merged if the settings the reports have
been generated with (stored in their model based testing tags) are identical. If the settings
of different requirement coverage reports are not compatible only a subset of the selected
requirement coverage reports are merged. Two additional tags, involved coverage results
(contains all the reports that are part of the merge result) and ignored coverage results
(contains all reports that are omitted from the merge process), are added to a resulting
requirement coverage result to document which reports are included in the merged report.

248

TestConductor RQM Plugin

To improve the integration between TestConductor and RQM, this plugin introduces the
possibility to directly create and link RQM TestScripts while working with Rhapsody and
TestConductor. An additional Helper 'Create RQM TestScript' is available which is
applicable on TestCases, TestContexts and TestPackages.

After running the helper, the user has to specify the RQM server to connect to, user login
and password for the server as well as the ProjectArea where the TestScript should be
created.

ROM Connection

Server

https: ffrgmserver 9444 gm

Projeck Area

Projects

User

ser

Passward

After that, a RQM command line TestScript will be created in the specified ProjectArea.
The required fields of the command line TestScript like the path to the used Rhapsody
model or the full model path to the element which should be tested are set automatically. If
additional options should be specified for the test, the necessary adaptions have to be done
manually.

If the model is located on a RDM (Rational Design Manager) Server, the execution
variables SERVER URL, PROJECT AREA NAME, STREAM_NAME, USER NAME
and PASSWORD are automatically added to the TestScript.

In RQM, the TestScript can now be executed using the TestConductor RQM Adapter as
described in the document “RQMTestConductorAdapter HowTo.pdf”

Also a Hyperlink to the newly created RQM TestScript is added automatically underneath
the model element for which the helper has been called. Following the Hyperlink, the
RQM TestScript can be opened directly from Rhapsody.

Note: This functionality is not available when using Rhapsody in Eclipse platform
integration.

249

TestConductor Check Model Plugin

Rhapsody has a checker feature which provides the possibility to perform structural and
behavioral checks of the model. In addition to the predefined internal checks which are
included in Rhapsody, further external checks can be defined and added to the list of
checks.

The model checks can either be performed for the active configuration or for selected
classes (Tools -> Check Model). The TestConductor checks are also automatically invoked
from the code generation.

More information about Rhapsody model checks in general can be found in the Rhapsody
User Guide in the chapter 'Checks'.

If the TestingProfile is loaded, the external TestConductor model checks are available. For
these checks TestConductor is set as its domain.

Configuration : DefaultConfig in TPkg_CashRegister_1_Comp

General | Description || Initialization Settingsl Checks |F|e|ati0ns Tags || Properties

Select Al Deselact Al
Select Checks to be performed: Eled] ’ BEEES]
Name Domain Severity Inkegrity Invoked on CG
[¥]In azsertion bazed mode, a configuration needs TestingConfiguration sterectype TestConductar 0 W arming Comect InvokedFromCGE

TestConductor |4k *waming ¥ t Ir romCG
[¥] TestScenario contains unspecified mezsages TestConductar /A W arhing Comect InvokedFromCG
[#] TestScenarnio containg unsupported inkeraction operator TestConductor €3 Error Cormrect InvokedFramCG
[tterticmal Fade crinnet errnr Somtas is fonbional Teandition] ftendontinnal Maze bMndal A Froee Carract Irvenk edFramC= !
< L
Locate QK

The following TestConductor checks are currently available:
e TestScenario contains unsupported SD operator (Warning)
e TestScenario contains unspecified messages (Warning)
e TestScenario contains unspecified instance lines (Warning)

e In assertion based mode, configuration needs <<TestingConfiguration>>
stereotype (Warning)

250

Appendix

TestConductor Assert Macros (C/C++),
TestConductor assert methods (Java),
TestConductor assert functions (Ada)

As described in chapter Test Case Definition with Code on page 47 and in chapter Test
Case Definition with Flow Charts on page 51 and in chapter TestCase Definition with
Statecharts on page 54, pre-defined assertion macros are used to get results from a test
case execution.

TestConductor defines several assertion macros (C/C++) listed below. Each macro might
have one up to four arguments with the following notation:

n = Name of the assertion (String, e.g. ,,Check 1)

e, el, e2=Boolean Expression (e.g. i != 23)

p = text of message printed in the sequence diagram

sd_instance name = Reference to the instance name of the sequence diagram
msgid = Reference to the message id of a message in the sequence diagram

RTC ASSERT (e)
Assertion with default name e. The assertion is PASSED, if the result of the
boolean expression is TRUE (e!=0), otherwise the assertion FAILED.

RTC_ASSERT FATAL (e)

Assertion with default name e. The assertion is PASSED, if the result of the
boolean expression is TRUE (e!=0), otherwise the assertion FAILED. Ifit is
failed, the test case is aborted immediately without executing further assertions.

RTC_ASSERT NAME (n, e)

Named assertion. The user can define the name of the assertion within the
argument n. The assertion is PASSED, if the result of the boolean expression is
TRUE (e ! =0), otherwise the assertion FAILED.

RTC ASSERT NAME FATAL(n, e)

Named fatal assertion. The user can define the name of the assertion within the
argument n. The assertion is PASSED, if the result of the boolean expression is
TRUE (e ! =0), otherwise the assertion FAILED. If it is failed, the test case is
aborted immediately without executing further assertions.

RTC_ASSERT SD (sd instance name, msgid, e)

Assertion that can be used within a sequence diagram. If such an assertion is used
in e.g. a driver operation or a stub operation, and sd_instance name refers to
a sequence diagram instance, and msgid refers to a message id of a message in
the sequence diagram of the sequence diagram instance, then the assertion is
executed and attached to the specified message.

RTC_ASSERT SD NAME (sd instance name, msgid, p, e)
Similar to RTC_ASSERT SD. The user has to define the string argument p, which

251

will be concatenated with the result of the assert macro (PASSED, FAILED etc.)
and printed as result message, e.g. “Check of return value failed.”

« RTC_ASSERT TRUE (n, e)

This assertion is PASSED, if e == TRUE. Otherwise the result of the assertion is
FAILED.

* RTC _ASSERT FALSE (n, e)
This assertion is PASSED, if e == FALSE. Otherwise the result of the assertion
is FAILED.

* RTC ASSERT EQUAL (n, el, e2)
This assertion is PASSED, if el == e2. Otherwise the result of the assertion is
FAILED.

* RTC ASSERT NOT EQUAL (n, el, e2)
This assertion is PASSED, if el != e2. Otherwise the result of the assertion is
FAILED.

* RTC ASSERT PTR EQUAL (n, el, e2)
This assertion is PASSED, if pointer e1 and pointer e2 are equal (el == e2).
Otherwise the result of the assertion is FAILED.

* RTC ASSERT PTR NOT EQUAL (n, el, e2)
This assertion is PASSED, if pointer e1 and pointer €2 not equal (e1 != e2).
Otherwise the result of the assertion is FAILED.

* RTC ASSERT PTR NULL (n, el)
This assertion is PASSED, if the pointer el is NULL. Otherwise the result of the
assertion is FAILED.

« RTC_ASSERT PTR NOT NULL (n, el)
This assertion is PASSED, if the pointer is not NULL. Otherwise the result of the
assertion is FAILED.

* RTC ASSERT CPTRSTRING EQUAL (n, el, e2)
This assertion is PASSED, if the string compare is equal (strcmp (el,e2) ==
0). Otherwise the result of the assertion is FAILED.

« RTC_ASSERT CPTRSTRING NOT EQUAL (n, el, e2)
This assertion is PASSED, if the string compare is not equal
(strcmp (el,e2) !'= 0). Otherwise the result of the assertion is FAILED.

* RTC ASSERT STRING EQUAL (n, el, e2)
This assertion is PASSED, if the comparison of the strings el and e2 is equal (el
== e2). Otherwise the result of the assertion is FAILED.

« RTC_ASSERT STRING NOT EQUAL (n, el, e2)
This assertion is PASSED, if the comparison of the strings e1 and e2 is not equal
(el != e?2). Otherwise the result of the assertion is FAILED.

For Java, TestConductor defines several assertion methods in the class TestConductor. The
following methods are available for Java (the semantics is analogues to the C/C++
macros):

* public static void ASSERT NAME(String n, boolean p)

252

public static void ASSERT SD(String s, String n, boolean p)

public static void ASSERT SD NAME(String s, String n, String m, boolean p)
public static void ASSERT(boolean e)

public static void ASSERT TRUE(String n, boolean ¢)

public static void ASSERT FALSE(String n, boolean ¢)

public static void ASSERT EQUAL(String n, boolean el, boolean ¢2)

public static void ASSERT NOT EQUAL(String n, boolean el, boolean ¢2)
public static void ASSERT STRING EQUAL(String n, String el, String e2)

public static void ASSERT STRING NOT EQUAL(String n, String el, String
e2)

For Ada, TestConductor defines several assertion procedures in the package
TestConductor. The following procedures are available for Ada (the semantics is
analogues to the C/C++ macros):

procedure ASSERT NAME(n : in String; p : in BOOLEAN; sfile : String := File;
iline : integer := Line);

procedure ASSERT NAME FATAL(n : in String; p : in BOOLEAN; sfile : String
:= File; iline : integer := Line);

procedure ASSERT SD(s : in String; n : in String; p : in BOOLEAN,; sfile : String
:= File; iline : integer := Line);

procedure ASSERT SD_NAME(s : in String; n : in String; m : in String; p: in
BOOLEAN,; sfile : String := File; iline : integer := Line);

procedure ASSERT(e : in BOOLEAN; sfile : String := File; iline : integer :=
Line);

procedure ASSERT TRUE(n : in String; e : in boolean; sfile : String := File;
iline : integer := Line);

procedure ASSERT FALSE(n : in String; e : in boolean; sfile : String := File;
iline : integer := Line);

procedure ASSERT EQUALC(n : in String; el : in boolean; €2 : in boolean; sfile :
String := File; iline : integer := Line);

procedure ASSERT NOT_EQUAL(n : in String; el : in boolean; €2 : in boolean;
sfile : String := File; iline : integer := Line);

procedure ASSERT STRING EQUAL(n : in String; el : in String; €2 : in String;
sfile : String := File; iline : integer := Line);

procedure ASSERT STRING NOT _EQUAL(n : in String; el : in String; €2 : in
String; sfile : String := File; iline : integer := Line);

253

Using IntelliVisor for TestConductor Assert Macros

TestConductor supports the usage of the IntelliVisor functionality of Rhapsody. To be able
to use this for the defined TestConductor Assert Macros, you have to prepare Rhapsody’s
site.prp file. Please do the following steps:

* Close Rhapsody if it is open.

* Copy the file rtc.prp from the ..\TestConductor folder to the ..\Share\Properties
folder of your Rhapsody installation.

* Open the site.prp file and add Include "rtc.prp".
* Save the site.prp file and open Rhapsody.

Using Ctrl+Space in a code based test case definition (Flowchart TestCase or Code
TestCase) the known IntelliVisor list box opens. With the modifications above you are
able to select one of the defined TestConductor Assert Macros. Selecting one of the
macros also shows a hint that gives you information about the parameters of the macro.

& RTC_ASSERT_CPTRSTRING_ECUAL ad
& RTC_ASSERT_CPTRSTRING_MNOT_EQUAL

= RTC_ASSERT_EQUAL

E RTC_ASSERT_FALSE

ERTC_ASSERT MAME Wissertion macra: RTC_ASSERT_MAME(<assertion
ERTC_ASSERT _MOT_EqQUAL prames, bool-sxpr)

E RTC_ASSERT_PTR_EQUAL

ERTC_ASSERT_PTR_MOT_EQUAL bl

< >

A double-click on the macro adds this to the code. For example you have chosen the
RTC_ASSERT NAME macro the following code will be added:

ETC_ASSERT NAME ("assertion name”, hool-expr):

Now you have to replace the string “assertion name” and the expression to that expression
you want to check.

254

Syntax for Activation Conditions / Condition Marks

TestConductor uses the following scheme of event activation conditions:

ObjectNamel->eventAction (ObjectName2, eventName)

The scheme of a state activation condition can be represented as follows:

ObjectName->stateAction (stateName)

The scheme of a method activation condition is as follows:

ObjectNamel->methodAction (ObjectName2, methodName)

In this syntax:

* eventAction is EventSent or EventReceived
* stateAction is StateEntered, StateExitedor IsIn
* methodAction is MethodCalled or MethodReturned

Note: The syntax of the activation condition is case sensitive. TestConductor checks
only the syntax and not for static semantics.

For example:

* PBX[0]->itsLine[0]->EventSent (PBX[0]-
>itsTelephone[0],evRing())
This activation condition is TRUE at the moment when object PBX [0] -
>itsLine[0] sends the event evRing () to object PBX[0] ->
itsTelephone[0]. In a sequence diagram, this corresponds to the origin of the
message arrow.

¢ PBX[0]->itsLine[0]->EventReceived (PBX[0]->
itsTelephone[0],evDialTone ())
This activation condition is TRUE at the moment when the object
PBX[0]->itsTelephone[0] receives the event evDialTone () from
object PBX[0]->itsLine [0]. In a sequence diagram, this corresponds to the
end point of the message arrow.

* line->MethodCalled(callRouter,OpenConnection())
The activation condition is TRUE at the moment when the 1 ine object calls the
OpenConnection () method of the cal1Router object.

* line->MethodReturned (callRouter,OpenConnection())
The activation condition is TRUE at the moment when the cal 1Router object
returns the OpenConnection () operation call to the 1ine object.

* telephone->StateEntered (ROOT.Ready.Calling)

The activation condition is TRUE at the moment when object telephone enters its
“Calling” state chart state.

255

* telephone->StateExited (ROOT.Ready.Calling)
The activation condition is TRUE at the moment when the telephone object exits
its “Calling” state chart state.

* telephone->IsIn(ROOT.Ready.Calling)
The activation condition is TRUE as long as the telephone object is in its
“Calling” state chart state.

Note: You must specify the full state chart state name (the state path), e.g.
“ROOT.Ready.Calling.” You can combine these expressions with AND, OR, and
NOT.

For example:

(NOT (callersLine->EventReceived(caller,evRing()))) OR
(caller->StateEntered (ROOT.Ready.Idle))

Do not use two different event conditions with the conjunction AND as a combined
activation condition. Such expressions can never have the value TRUE, because
TestConductor and the Rhapsody animation tool work sequentially. At most, one event can
be sent or received at every point in time. In addition, be careful when combining several
state conditions by the conjunction AND: every object can stay in one “basic” state at every
point in time, if its state chart does not contain a hierarchical state with orthogonal
components. In addition, you can use the name ENV as an object name to specify event
sending to and receiving from the system’s environment.

Activation conditions use the following shortcuts:

e ES for EventSent; ER for EventReceived
e MC for MethodCalled; MR for MethodReturned
* SE for StateEntered; SX for StateExited; IT for IsIn

256

TestConductor Messages

Errors/Warnings regarding messages in Sequence Diagrams

Some sequence diagram features are not supported by TestConductor. They will be
ignored and a warning comes up, but the test will be executed.

Timeouts will be ignored.

Cancelled timeouts will be ignored.

Reply messages will be ignored.

Execution occurrences will be ignored.

Rhapsody in C initializers will be ignored.

Rhapsody in C++/ Rhapsody in Java constructors will be ignored.
Rhapsody in C cleanup operations will be ignored.

Rhapsody in C++/ Rhapsody in Java destructors will be ignored.
<name> : Unspecified messages will be ignored.

<name> : Unrealized messages to an internal instance will be ignored.
Messages with wrong syntax will also be ignored in test execution:
Condition : <name> is not a valid expression.

Time interval with a lower bound of 0 will be ignored.

Time intervals are only supported on system border. Other time intervals will be
ignored.

<name> : Wrong syntax of time interval. Time interval will be ignored.

Time intervals are only allowed for driver or black box tests. In monitor tests time
intervals will be ignored.

<name> : Method not supported by method broker. Remove message from
sequence diagram. (only Rhapsody in Java)

Errors Regarding Complete Sequence Diagrams and Test (test will
not be executed)

In a black box test only messages from or to the system border are used for the test.
If a sequence diagram only has internal or unsupported messages, a black box test
will not be executed.

SD has only internal Messages or unsupported elements.
Black-Box test will not be executed.

If a sequence diagram is empty or only has unsupported messages, the test will not
be executed

SD contains only unsupported elements. Compilation
aborted. SD without any constructs is not supported.

In some cases executing a test with a sequence diagram which hat more than 2000
messages leads to a crash due to a small stack size. In this case, please refer to the
release notes how to increase the stack size of your system.

Due to the actual size of this SD, test execution can

257

lead to a crash. In such a case, please contact support
to get a patch or refer to the release notes and use
the mentioned workaround.

If two messages of a sequence diagram start/end at the same point TestConductor
can not get correct information about the messages so the compilation fails. If this
happens, make sure that there is only one message starting/ending on each message
point.

TEST: <name>

Sequence Diagram: <name>

ERROR: Compilation error - Test will not be executed.
This error can have different reasons. Known reasons
are:

- Sequence Diagram contains a time interval beginning
or ending on other message points.

- Sequence Diagram contains unspecified messages.

If the activation condition of a test has the wrong syntax the test will not be
executed.

TEST: <name>

Sequence Diagram: <name>

ERROR: Syntax error in activation condition
<ActivationCondition>

Another message arrow detected between start point and end point of operation.
TEST: <name>

Sequence Diagram: <name>

Another message arrow detected between start point and
end point of

Operation <name>.

This is not supported by TestConductor.

To execute the test, please move start/end points of
other messages above or below the message arrow of
<name>.

If there is an unspecified message in the specification sequence diagram
<Message name>: Unrealized Messages to an internal
instance will be ignored.

If there is an unrealized message in the specification sequence diagram
<Message name>: Messages with Stereotype <unrealized>
will be ignored.

If the specification sequence diagram has an unspecified class

TEST: <test name>

Sequence Diagram: <name>

Class of Instance <class name> is unspecified. Test
will not be executed.

258

Restrictions

TestConductor supports Rhapsody in C/C++/Java/Ada with its existing and with its new
features. The most important limitations are:

* Assertion based testing mode is only supported for RhapsodyC and RhapsodyC—++.

* Code coverage computation with TestConductor is only supported with assertion
based testing mode for RhapsodyC and RhapsodyC++.

* Code or flow chart test cases are only supported for Rhapsody in C/C++.
* Black box production code test case execution only for Rhapsody in C++ and C.
* TestConductor does not support C#.

Limitations of design elements (sequence diagrams)

Currently, TestConductor does not support the following sequence diagram features:

* Create arrow

* Destroy arrow

* Reply message

e Timeout

* Cancelled timeouts

* Constraints

* Language for condition marks

Condition marks must obey the same syntax as activation conditions. Currently, simple
expressions with equality or inequality are not yet allowed in activation conditions and
condition marks.

Note: TestConductor will ignore condition marks during test execution when the syntax
of the condition mark is not valid.

If you use these unsupported features in a sequence diagram, TestConductor ignores them
during test execution.

Functional Limitations

All TestConductor features are available for Rhapsody in C++, C, Java and Ada. Rhapsody
Automatic Test Generation (ATG) is only available for Rhapsody in C++. For
TestConductor, the most important limitations are:

* Flow chart test cases are only supported for Rhapsody in C/C++.
* Black box production code test case execution only for Rhapsody in C/C++.

Beside the listed important limitation there are some other know limitations:

* Obsolete profiles (ATGProfile, TestingProfile CPP, TestingProfile C,
TestingProfile Java, TestingProfile Ada) must be deleted from models manually.

* Only virtual operations can be stubbed.

259

When using animation based testing mode, TestConductor cannot generate stubs
for triggered operations.

TestConductor cannot generate stubs, if the signature of overwritten operations in
an inheritance hierarchy do not syntactically match to the related operation in the
base class (for instance, due to different typedef-types to the same base type)

The auto-generated code for driver- or stub-operations could be semantically
incorrect, if non-default values for the properties CPP_CG: : {Class,
Type}::{In, Out, InOut} areused. Note that incorrectly generated code
could be overwritten by setting the tag RTC DriverCallCode, RTCDriverlnitCode
respectively RTC StubBodyCode.

If a TestComponent instance is linked to a SUT using a qualified association
relation, Rhapsody does not generate code to implement the link. TestConductor
can not generate driver operations for messages, which use such a link.

Building SUT for black-box testing requires an animation property change in the
design model.

Auto created operations are not animated and cannot be used in test cases: due to a
limitation in the Rhapsody animation, auto generated operations like getter/setter
for class attributes are not animated during execution, they do not appear in
animated sequence diagrams and observers don't get notifications about these
messages (even if the property CG: CGGeneral:GeneratedCodeInBrowser is
set to true).

260

	Contents
	Document Structure
	Contacting IBM® Rational® Software Support
	Conventions

	Introduction
	Rhapsody UML Testing Profile
	Structure Overview
	Adding the Testing Profile automatically
	Adding the Testing Profile manually

	Functional Specification
	UML Testing Profile (UML20TP) Package
	TestArchitecture Package
	TestBehavior Package

	TestConductor (RTC) Package
	TestArchitecture Package
	TestBehavior Package
	TestDocumentation Package

	Automatic Test Generation (ATG) Package

	Using the Testing Profile
	Refining Testing Profile Stereotypes

	Model-based Unit Test Definition
	Automatic Test Architecture Generation
	Using Classes
	Using Objects
	Using Files (Modules)
	Using Parts
	TestArchitectures with multiple SUT classes or objects
	Updating TestArchitectures
	Up-to-date check for TestArchitectures
	TestArchitecures for MicroC Models
	TestArchitecures for Code centric Models
	Unit testing of AUTOSAR Software Components
	TestConductor.h, TestConductor_C.h and TestConductor_C.c, TestConductor.jar, TestConductor.ads and TestConductor.adb
	Generate and Build the Test Context

	Test Case Definition
	Test Case Definition with Code
	Define a Code Test Case
	Execute a Code Test Case
	Failure Analysis in CodeTest Cases
	Testing reactive behavior with Code Test Cases

	Test Case Definition with Flow Charts
	Define a Flow Chart Test Case
	Execute a Flow Chart Test Case
	Failure Analysis in Flow Chart Test Cases
	Testing reactive behavior with Flow Chart Test Cases

	TestCase Definition with Statecharts
	Define a Statechart Test Case
	Execute a Statechart Test Case
	Failure Analysis in Statechart Test Cases

	Test Case Definition with Sequence Diagrams
	Define a Sequence Diagram Test Case
	Execute a Sequence Diagram Test Case
	Failure Analysis in Sequence Diagram Test Cases
	Model Population – Create Driver Operations and Stub Operations

	Creating test cases with the test case wizard
	Creating Sequence Diagram test cases from existing Scenarios using an explicit instance mapping
	Definition of mappings for sequence diagram test case creation from existing scenarios

	Test Execution
	Overview
	Test Configuration
	Test Configuration for animation based testing
	White Box Testing
	Build Test Context (White Box)

	Production Code (Black Box) Testing
	Build Test Context (Black Box for animation based testing mode)

	Test Case Execution
	Test Execution Dialog for code, flow chart, startechart based tests
	Test Execution Dialog
	Test Information
	Controlling test case execution

	Test Execution Dialog for sequence diagram based tests
	Test Execution Dialog
	Test Information
	Displaying Test Results by witness scenarios
	Automatically adding witness scenarios to the model for failed SDInstances

	Abort Test Execution
	Execution Timeout
	Execution timeout for animation based testing

	Test Execution Report
	Debugging test cases
	Using breaks and tracer commands during debugging

	Test Context Execution
	Starting Test Execution
	Stopping Test Execution
	Execution Timeout
	Ordering of Test Cases
	Test Execution Report

	Test Package Execution
	Starting Test Execution
	Stopping Execution
	Execution Timeout
	Test Execution Report

	Assertion based testing mode
	Choosing between testing modes
	Migrating animation based test architecture to assertion based test architecture
	Automatical Migration of animation based TestArchitectures to assertion based Testing mode
	Differences between animation and assertion based testing mode

	Computing Model Coverage during Test Execution
	Computing Model Coverage for single Test Cases
	Coverage Items
	Coverage Measurement
	Traceability of Coverage Items
	Choosing the Coverage Kind for Model Coverage

	Computing cumulative Model Coverage for TestContexts
	Computing cumulative Model Coverage for TestPackages

	Computing Requirement Coverage
	Computing Requirement Coverage for Test Cases and TestContexts
	Transitivity of Dependencies (Refinement of model elements and requirements)

	Computing Code Coverage
	Integration with CUnit/CppUnit Framework
	Stereotypes for CUnit integration
	Stereotypes for CppUnit integration
	Test Definition for CUnit/CppUnit
	Using Statechart Test Cases with CppUnit

	Command Line Execution
	Command Line Syntax for rhapsody.exe
	Command Line Syntax for rhapsodycl.exe
	Test Execution Report

	Test Case Execution on Targets
	Driving Operations Calls
	Driving Operation Calls

	Test Management
	Managing Test Data
	Linking Test Case to Requirements

	TestConductor Dialog
	TestConductor Settings
	Sequence Diagram Properties
	General Properties
	Test Context Properties
	Test Case Properties

	Generating Test Reports with Rhapsody ReporterPLUS
	Executing the Test Report
	Using the HTML Test Report
	Using the Test Requirement Coverage Report
	Customizing the Test Report

	Generating Test Reports with Rational Publishing Engine
	Creating the Test Report
	Test Requirement Coverage Report
	Creating Report Templates

	Using the TestConductor API
	Available TestConductor API Commands
	Defining Callbacks for TestConductor functions

	Advanced Test Definition
	Specifying Requirements with Sequence Diagrams
	Graphical Feature Support
	Synchronous and Asynchronous Messages
	Linear and Partial Order

	Parameters
	Defining Parameters
	Parameter Mapping

	Using Time Interval for Delay Driving from Environment and TestComponents
	Activation Conditions
	Defining an Activation Condition
	Condition Marks
	Preconditions (for SysML/Harmony)
	Use Cases of Activation Conditions

	Specifying Return Values and Output Values
	Ignoring Unrealized Messages
	Reference Sequence Diagram
	Life Line and Part Decomposition

	Advanced Sequence Diagram Test Definition
	Defining a Sequence Diagram Test
	Creating a Sequence Diagram Test Case
	Adding a New Sequence Diagram Instance
	Mapping Parameters
	Don't care values, Ranges, and Tolerances
	Exiting the Define Test Dialog Box

	Use Cases of Sequence Diagram Test Cases
	Simple Monitor
	Automatic Driver
	Ordered SD Instances
	Driver-Assisted Monitor
	Choosing Between Alternatives in a Cycle

	User Defined Driving Operation Calls
	RTC_DriverInitCode and RTC_DriverInitCodeAdditional
	RTC_DriverCallCode and RTC_DriverCallCodeAdditional
	Clean TestComponent
	Clean TestPackage
	Deleting User Defined Driver Operation Calls

	User Defined Stub Operation Calls
	RTC_StubBodyCode
	Clean TestComponent
	Clean TestPackage
	Deleting User Defined Stub Operation Calls

	Black-Box Testing of External Files and Libraries
	Test Packages

	Support for interfacing Files in C using <<CInterfaceFile>> Stereotype
	Using Serialize/Unserialize Functions for User Defined Types
	Using auto generated serialization /unserialization functions
	Using manually defined serialization /unserialization functions

	Failure Analysis
	Failure Reporting
	Event sending out-of-order
	Event sending in-order, but parameter values do not match
	Event sending in-order, but parameter values not in range
	Event consumption out-of-order
	Event consumption in-order, but parameter values do not match
	Event consumption in-order, but parameter values not in range
	Operation call out-of-order
	Operation call in-order, but parameter values do not match
	Operation call in-order, but parameter values not in range
	Operation call returned - Return value does not match
	Operation call returned - Out Parameter values do not match
	Operation call returned - Out Parameter values not in range
	DataFlow Message - Value does not match
	DataFlow Message - Value not in range
	DataFlow Message out of order
	Assertion failed

	Using TestConductor from Eclipse
	Using TestConductor from Rational Quality Manager
	TestConductor Rhapsody Plugins
	TestConductor Merge Coverage Reports Plugin
	Merging model coverage reports
	Merging code coverage reports
	Merging requirement coverage reports

	TestConductor RQM Plugin
	TestConductor Check Model Plugin

	Appendix
	TestConductor Assert Macros (C/C++), TestConductor assert methods (Java), TestConductor assert functions (Ada)
	Using IntelliVisor for TestConductor Assert Macros

	Syntax for Activation Conditions / Condition Marks
	TestConductor Messages
	Errors/Warnings regarding messages in Sequence Diagrams
	Errors Regarding Complete Sequence Diagrams and Test (test will not be executed)

	Restrictions
	Limitations of design elements (sequence diagrams)
	Functional Limitations

